Cell and Tissue Banking

, Volume 17, Issue 4, pp 665–675 | Cite as

Cytotoxicity testing of a polyurethane nanofiber membrane modified with chitosan/β-cyclodextrin/berberine suitable for wound dressing application: evaluation of biocompatibility

  • Monika Klempaiová
  • Jana Dragúňová
  • Peter KabátEmail author
  • Mária Hnátová
  • Ján Koller
  • Dušan Bakoš


In this study we evaluated the biocompatibility of a modified polyurethane nanofiber membrane on a polypropylene spunbond substrate. This material was treated with plasma using diffuse coplanar surface barrier discharge, and subsequent modification was done by continuous spraying of a biologically active chitosan solution (CHIT) containing an inclusion complex of β-cyclodextrin (β-CD) encapsulating berberine (BRB). Biocompatibility was evaluated using several in vitro assays. Human dermal fibroblasts (HDFs) and 3T3 murine fibroblasts were used as biological models. The results of these assays showed that a polyurethane nanofiber membrane modified by CHIT/β-CD/BRB appears to be non-toxic and biocompatible; potentially, it could be used as a wound dressing after further testing.


Modified polyurethane nanofiber membrane Plasma treatment Biocompatibility 3T3 murine fibroblasts Human dermal fibroblasts 



The authors thank Dr. Jacob Bauer for his critical comments on the manuscript and the language editing. This work was supported by the Slovak Research and Development Agency under contract No. APVV 0294-14, by the Slovak Ministry of Education, Science, Research and Sport under contract No: VEGA 1/0297/14 and by Research and Development Operational Programme funded by the ERDF Grant No.: ITMS 26240220086.


  1. Akçakoca Kumbasar EP, Akduman Ç, Çay A (2014) Effects of β-cyclodextrin on selected properties of electrospun thermoplastic polyurethane nanofibres. Carbohydr Polym 104:42–49. doi: 10.1016/j.carbpol.2013.12.065 CrossRefPubMedGoogle Scholar
  2. Archana D, Dutta J, Dutta PK (2013) Evaluation of chitosan nano dressing for wound healing: characterization, in vitro and in vivo studies. Int J Biol Macromol 57:193–203. doi: 10.1016/j.ijbiomac.2013.03.002 CrossRefPubMedGoogle Scholar
  3. Azuma K, Izumi R, Osaki T, Ifuku S, Morimoto M, Saimoto H, Minami S, Okamoto Y (2015) Chitin, chitosan, and its derivatives for wound healing: old and new materials. J Funct Biomater 6:104–142. doi: 10.3390/jfb6010104 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Boateng JS, Matthews KH, Stevens HN, Eccleston GM (2008) Wound healing dressings and drug delivery systems: a review. J Pharm Sci 97:2892–2923. doi: 10.1002/jps.21210 CrossRefPubMedGoogle Scholar
  5. Bodiwala HS, Sabde S, Mitra D, Bhutani KK, Singh IP (2011) Synthesis of 9-substituted derivatives of berberine as anti-HIV agents. Eur J Med Chem 46:1045–1049. doi: 10.1016/j.ejmech.2011.01.016 CrossRefPubMedGoogle Scholar
  6. Černák M, Černáková Ľ, Hudec I, Kováčik D, Zahoranová A (2009) diffuse coplanar surface barrier discharge and its applications for in-line processing of low-added-value materials. Eur Phys J Appl Phys 47:22806. doi: 10.1051/epjap/2009131 CrossRefGoogle Scholar
  7. Chen JP, Chang GY, Chen JK (2008) Electrospun collagen/chitosan nanofibrous membrane as wound dressing. Colloids Surf A Physicochem Eng Asp 313:183–188. doi: 10.1016/j.colsurfa.2007.04.129 CrossRefGoogle Scholar
  8. Cherng JY, Hou TY, Shih MF, Talsma H, Hennink WE (2013) Polyurethane-based drug delivery systems. Int J Pharm 450:145–162. doi: 10.1016/j.ijpharm.2013.04.063 CrossRefPubMedGoogle Scholar
  9. Dai T, Tanaka M, Huang YY, Hamblin MR (2011) Chitosan preparations for wounds and burns: antimicrobial and wound-healing effects. Expert Rev Anti Infect Ther 9:857–879. doi: 10.1586/eri.11.59 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Dragúňová J, Kabát P, Koller J (2013) Skin explant cultures as a source of keratinocytes for cultivation. Cell Tissue Bank 14:317–324. doi: 10.1007/s10561-012-9330-4 CrossRefPubMedGoogle Scholar
  11. Enoch S, Leaper DJ (2008) Basic science of wound healing. Surgery (Oxford) 26:31–37. doi: 10.1016/j.mpsur.2007.11.005 CrossRefGoogle Scholar
  12. Giordano F, Novak C, Moyano JR (2001) Thermal analysis of cyclodextrins and their inclusion compounds. Thermochim Acta 380:123–151. doi: 10.1016/S0040-6031(01)00665-7 CrossRefGoogle Scholar
  13. Hazra S, Hossain M, Kumar GS (2014) Studies on α-, β-, and γ-cyclodextrin inclusion complexes of isoquinoline alkaloids berberine, palmatine and coralyne. J Incl Phenom Macrocycl Chem 78:311–323. doi: 10.1007/s10847-013-0301-6 CrossRefGoogle Scholar
  14. Ignatius AA, Claes L (1996) In vitro biocompatibility of bioresorbable polymers: poly (l, dl-lactide) and poly (l-lactide–co-glycolide). Biomaterials 17:831–839. doi: 10.1016/0142-9612(96)81421-9 CrossRefPubMedGoogle Scholar
  15. Ignatius AA, Schmidt C, Kaspar D, Claes LE (2001) In vitro biocompatibility of resorbable experimental glass ceramics for bone substitutes. J Biomed Mater Res 55:285–294. doi: 10.1002/1097-4636(20010605)55:3<285:AID-JBM1016>3.0.CO;2-1 CrossRefPubMedGoogle Scholar
  16. Jayakumar R, Prabaharan M, Sudheesh Kumar PT, Nair SV, Tamura H (2011) Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol Adv 29:322–337. doi: 10.1016/j.biotechadv.2011.01.005 CrossRefPubMedGoogle Scholar
  17. Jia B, Li Y, Wang D, Duan R (2014) Study on the interaction of β-Cyclodextrin and Berberine hydrochloride and its analytical application. PLoS ONE 9:e95498. doi: 10.1371/journal.pone.0095498 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Kara F, Ayse Aksoy E, Yuksekdag Z, Hasirci N, Aksoy S (2014) Synthesis and surface modification of polyurethanes with chitosan for antibacterial properties. Carbohyd Polym 112:39–47. doi: 10.1016/j.carbpol.2014.05.019 CrossRefGoogle Scholar
  19. Kara F, Ayse Aksoy E, Yuksekdag Z, Aksoy S, Hasirci N (2015) Enhancement of antibacterial properties of polyurethanes by chitosan and heparin immobilization. Appl Surf Sci 357:1692–1702. doi: 10.1016/j.apsusc.2015.09.227 CrossRefGoogle Scholar
  20. Khil MS, Cha DI, Kim HY, Kim IS, Bhattarai N (2003) Electrospun nanofibrous polyurethane membrane as wound dressing. J Biomed Mater Res B Appl Biomater 67:675–679. doi: 10.1002/jbm.b.10058 CrossRefPubMedGoogle Scholar
  21. Küpeli E, Koşar M, Yeşilada E, Hüsnü K, Başer C, Başer C (2002) A comparative study on the anti-inflammatory, antinociceptive and antipyretic effects of isoquinoline alkaloids from the roots of Turkish Berberis species. Life Sci 72:645–657. doi: 10.1016/S0024-3205(02)02200-2 CrossRefPubMedGoogle Scholar
  22. Li N, Xu L (2010) Thermal analysis of β-cyclodextrin/Berberine chloride inclusion compounds. Thermochim Acta 499:166–170. doi: 10.1016/j.tca.2009.10.014 CrossRefGoogle Scholar
  23. Lv W, Luo J, Deng Y, Sun Y (2013) Biomaterials immobilized with chitosan for rechargeable antimicrobial drug delivery. J Biomed Mater Res A 101A:447–455. doi: 10.1002/jbm.a.34350 CrossRefGoogle Scholar
  24. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63. doi: 10.1016/0022-1759(83)90303-4 CrossRefPubMedGoogle Scholar
  25. Park KD, Lee JH, Kim SH, Kang TH, Moon JS, Kim SU (2006) Synthesis of 13-(substituted benzyl) berberine and berberrubine derivatives as antifungal agents. Bioorg Med Chem Lett 16:3913–3916. doi: 10.1016/j.bmcl.2006.05.033 CrossRefPubMedGoogle Scholar
  26. Patrulea V, Ostafe V, Borchard G, Jordan O (2015) Chitosan as a starting material for wound healing applications. Eur J Pharm Biopharm 97(Pt B):417–426. doi: 10.1016/j.ejpb.2015.08.004 CrossRefPubMedGoogle Scholar
  27. Samosorn S, Tanwirat B, Muhamad N, Casadei G, Tomkiewicz D, Lewis K, Suksamrarn A, Prammananan T, Gornall KC, Beck JL, Bremner JB (2009) Antibacterial activity of berberine-NorA pump inhibitor hybrids with a methylene ether linking group. Bioorg Med Chem 17:3866–3872. doi: 10.1016/j.bmc.2009.04.028 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Schmalz G (1988) Agar overlay method. Int Endod J 21:59–66. doi: 10.1111/j.1365-2591.1988.tb00956.x CrossRefPubMedGoogle Scholar
  29. Sjögren G, Sletten G, Dahl J (2000) Cytotoxicity of dental alloys, metals, and ceramics assessed by Millipore filter, agar overlay, and MTT tests. J Prosthet Dent 84:229–236. doi: 10.1067/mpr.2000.107227 CrossRefPubMedGoogle Scholar
  30. Thakur RA, Florek CA, Kohn J, Michniak BB (2008) Electrospun nanofibrous polymeric scaffold with targeted drug release profiles for potential application as wound dressing. Int J Pharm 364:87–93. doi: 10.1016/j.ijpharm.2008.07.033 CrossRefPubMedGoogle Scholar
  31. Vitteková M, Dragúňová J, Kabát P, Božiková M, Bakoš D, Koller J (2014) Cytotoxicity testing of scaffolds potentially suitable for the preparation of three-dimensional skin substitutes. Cell Tissue Bank 15:345–355. doi: 10.1007/s10561-013-9390-0 CrossRefPubMedGoogle Scholar
  32. Vojtaššák J, Bakoš D, Danihel Ľ, Krištín J, Böhmer D, Danišovič Ľ, Blaško M (2001) In vitro cytotoxicity testing of coladerm membrane. Cell Tissue Bank 2:225–233. doi: 10.1023/A:1021146217176 CrossRefPubMedGoogle Scholar
  33. Vuddanda PR, Chakraborty S, Singh S (2010) Berberine: a potential phytochemical with multispectrum therapeutic activities. Expert Opin Investig Drugs 19:1297–1307. doi: 10.1517/13543784.2010.517745 CrossRefPubMedGoogle Scholar
  34. Wang Y, Hong Q, Chen Y, Lian X, Xiong Y (2012) Surface properties of polyurethanes modified by bioactive polysaccharide-based polyelectrolyte multilayers. Colloids Surf B Biointerfaces 100:77–83. doi: 10.1016/j.colsurfb.2012.05.030 CrossRefPubMedGoogle Scholar
  35. Yu JS, Wei FD, Gao W, Zhao CC (2002) Thermodynamic study on the effects of β-cyclodextrin inclusion with berberine. Spectrochim Acta Part A 58:249–256. doi: 10.1016/S1386-1425(01)00536-4 CrossRefGoogle Scholar
  36. Zdrahala RJ, Zdrahala IJ (1999) Biomedical applications of polyurethanes: a review of past promises, present realities, and a vibrant future. J Biomater Appl 14:67–90. doi: 10.1177/088532829901400104 PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Monika Klempaiová
    • 1
  • Jana Dragúňová
    • 2
  • Peter Kabát
    • 3
    • 4
    Email author
  • Mária Hnátová
    • 1
  • Ján Koller
    • 2
  • Dušan Bakoš
    • 1
  1. 1.Department of Plastics and Rubber, Faculty of Chemical and Food TechnologySlovak University of TechnologyBratislavaSlovakia
  2. 2.Department of Burns and Reconstructive Surgery, Faculty of MedicineComenius UniversityBratislavaSlovakia
  3. 3.Institute of Virology, Biomedical Research CenterSlovak Academy of SciencesBratislavaSlovakia
  4. 4.Department of Microbiology and Virology, Faculty of Natural SciencesComenius UniversityBratislava 4Slovakia

Personalised recommendations