Advertisement

Cell and Tissue Banking

, Volume 17, Issue 4, pp 735–744 | Cite as

Stem cell regenerative potential for plastic and reconstructive surgery

  • Martin BoháčEmail author
  • Mária Csöbönyeiová
  • Ida Kupcová
  • Radoslav Zamborský
  • Jozef Fedeleš
  • Ján Koller
Full Length Review

Abstract

Stem cells represent heterogeneous population of undifferentiated cells with unique characteristics of long term self renewal and plasticity. Moreover, they are capable of active migration to diseased tissues, secretion of different bioactive molecules, and they have immunosuppressive potential as well. They occur in all tissues through life and are involved in process of embryogenesis and regeneration. During last decades stem cells attracted significant attention in each field of medicine, including plastic and reconstructive surgery. The main goal of the present review article is to present and discuss the potential of stem cells and to provide information about their safe utilization in chronic wounds and fistulae healing, scar management, breast reconstruction, as well as in bone, tendon and peripheral nerve regeneration.

Keywords

Stem cells iPSCs Regenerative medicine Plastic surgery 

Notes

Acknowledgments

Received from Ministry of Health of the Slovak republic (Registration number: 2012/4-UKBA-4) and Slovak Research and Development Agency (Registration number: APVV-14-0032).

Author’s contribution

MB designed, organized, and prepared the manuscript from the initial draft to final version. MC participated in manuscript preparation. IK participated in manuscript preparation. RZ was involved in manuscript design, organization and preparation. JF participated in manuscript preparation. JK participated in manuscript preparation.

Compliance with ethical standards

Conflict of interest

All authors have completed the Unified Competing Interest form at www.icmje.org/coi_disclosure.pdf (available on request from the corresponding author) and declare: no support from any organization for the submitted work; no financial relationships with any organizations that might have an interest in the submitted work in the previous 3 years; no other relationships or activities that could appear to have influenced the submitted work.

References

  1. Agacayak S, Gulsun B, Ucan MC, Karaoz E, Nergiz Y (2012) Effects of mesenchymal stem cells in critical size bone defect. Eur Rev Med Pharmacol Sci 16:679–686PubMedGoogle Scholar
  2. All AH, Gharibani P, Gupta S, Bazley FA, Pashai N, Chou BK et al (2015) Early intervention for spinal cord injury with human induced pluripotent stem cells oligodendrocyte progenitors. PLoS ONE 10:e0116933CrossRefPubMedPubMedCentralGoogle Scholar
  3. Altman GH, Horan RL, Martin I, Farhadi J, Stark PR, Volloch V et al (2002) Cell differentiation by mechanical stress. FASEB J 16:270–272PubMedGoogle Scholar
  4. Aust MC, Reimers K, Kaplan HM, Stahl F, Repenning C, Scheper T et al (2011) Percutaneous collagen induction-regeneration in place of cicatrisation? J Plast Reconstr Aesthet Surg 64:97–107CrossRefPubMedGoogle Scholar
  5. Bilousova G, du Jun H, King KB, De Langhe S, Chick WS, Torchia EC et al (2011) Osteoblasts derived from induced pluripotent stem cells form calcified structures in scaffolds both in vitro and in vivo. Stem Cells 29:206–216CrossRefPubMedPubMedCentralGoogle Scholar
  6. Caldwell MA, He X, Wilkie N, Pollack S, Marshall G, Wafford KA, Svendsen CN (2001) Growth factors regulate the survival and fate of cells derived from human neurospheres. Nat Biotechnol 19(5):475–479CrossRefPubMedGoogle Scholar
  7. Caplan AI (1991) Mesenchymal stem cells. J Orthop Res 9:641–650CrossRefPubMedGoogle Scholar
  8. Ciccocioppo R, Gallia A, Sgarella A, Kruzliak P, Gobbi PG, Corazza GR (2015) Long-term follow-up of Crohn disease fistulas after local injections of bone marrow-derived mesenchymal stem cells. Mayo Clin Proc 90:747–755CrossRefPubMedGoogle Scholar
  9. Claro F Jr, Figueiredo JC, Zampar AG, Pinto-Neto AM (2012) Applicability and safety of autologous fat for reconstruction of the breast. Br J Surg 99:768–780CrossRefPubMedGoogle Scholar
  10. Coleman SR (2006) Structural fat grafting: more than a permanent filler. Plast Reconstr Surg 118:108S–120SCrossRefPubMedGoogle Scholar
  11. Czaplewski SK, Tsai TL, Duenwald-Kuehl SE, Vanderby R Jr, Li WJ (2014) Tenogenic differentiation of human induced pluripotent stem cell-derived mesenchymal stem cells dictated by properties of braided submicron fibrous scaffolds. Biomaterials 35:6907e17CrossRefGoogle Scholar
  12. Daher RJ, Chahine NO, Razzano P, Patwa SA, Sgaglione NJ, Grande DA (2011) Tendon repair augmented with a novel circulating stem cell population. Int J Clin Exp Med 4:214–219PubMedPubMedCentralGoogle Scholar
  13. Danisovic L, Varga I, Polak S, Bajcikova B, Adamkov M, Vojtassak J (2014) Biological and morphological characterization of in vitro expanded human muscle-derived stem cells. Tsitologiya 53:482–487Google Scholar
  14. de la Portilla F, Alba F, García-Olmo D, Herrerías JM, González FX, Galindo A (2013) Expanded allogeneic adipose-derived stem cells (eASCs) for the treatment of complex perianal fistula in Crohn’s disease: results from a multicenter phase I/IIa clinical trial. Int J Colorectal Dis 28:313–323CrossRefPubMedGoogle Scholar
  15. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317CrossRefPubMedGoogle Scholar
  16. Duan X, Tu Q, Zhang J, Ye J, Sommer C, Mostoslavsky G et al (2011) Application of induced pluripotent stem (iPS) cells in periodontal tissue regeneration. J Cell Physiol 226:150–157CrossRefPubMedPubMedCentralGoogle Scholar
  17. Duscher D, Barrera J, Wong VW, Maan ZN, Whittam AJ, Januszyk M, Gurtner GC (2015) Stem cells in wound healing: The future of regenerative medicine? A mini-review. Gerontology 62(2):216–225CrossRefPubMedGoogle Scholar
  18. Fabbrocini G, De Vita V, Monfrecola A, De Padova MP, Brazzini B, Teixeira F, Chu A (2014) Percutaneous collagen induction: an effective and safe treatment for post-acne scarring in different skin phototypes. J Dermatolog Treat 25:147–152CrossRefPubMedGoogle Scholar
  19. Falanga V, Iwamoto S, Chartier M, Yufit T, Butmarc J, Kouttab N et al (2007) Autologous bone marrow-derived cultured mesenchymal stem cells delivered in a fibrin spray accelerate healing in murine and human cutaneous wounds. Tissue Eng 13:1299–1312CrossRefPubMedGoogle Scholar
  20. Fujimoto Y, Abematsu M, Falk A, Tsujimura K, Sanosaka T, Juliandi B et al (2012) Treatment of a mouse model of spinal cord injury by transplantation of human induced pluripotent stem cell-derived long-term self-renewing neuroepithelial-like stem cells. Stem Cells 30:1163–1173CrossRefPubMedGoogle Scholar
  21. Gentile P, De Angelis B, Pasin M, Cervelli G, Curcio CB, Floris M et al (2014) Adipose-derived stromal vascular fraction cells and platelet-rich plasma: basic and clinical evaluation for cell-based therapies in patients with scars on the face. J Craniofac Surg 25:267–272CrossRefPubMedGoogle Scholar
  22. Giannotti S, Trombi L, Bottai V, Ghilardi M, D’Alessandro D, Danti S et al (2013) Use of autologous human mesenchymal stromal cell/fibrin clot constructs in upper limb non-unions: long-term assessment. PLoS ONE 8:e73893CrossRefPubMedPubMedCentralGoogle Scholar
  23. Giannoudis PV, Einhorn TA, Schmidmaier G, Marsh D (2008) The diamond concept -open questions. Injury 39:S5–S8CrossRefPubMedGoogle Scholar
  24. Gottrup F, Apelqvist J, Price P (2010) Outcomes in controlled and comparative studies on non-healing wounds: recommendations to improve the quality of evidence in wound management. J Wound Care 19:237–268CrossRefPubMedGoogle Scholar
  25. Granero-Moltó F, Weis JA, Miga MI, Landis B, Myers TJ, O’Rear L et al (2009) Regenerative effects of transplanted mesenchymal stem cells in fracture healing. Stem Cells 27:1887–1898CrossRefPubMedPubMedCentralGoogle Scholar
  26. Han SK, Kim HR, Kim WK (2010) The treatment of diabetic foot ulcers with uncultured, processed lipoaspirate cells: a pilot study. Wound Repair Regen 18:342–348CrossRefPubMedGoogle Scholar
  27. Heslop JA, Hammond TG, Santeramo I, Tort Piella A, Hopp I, Zhou J et al (2015) Concise review: workshop review: understanding and assessing the risks of stem cell-based therapies. Stem Cells Transl Med 4:389–400CrossRefPubMedPubMedCentralGoogle Scholar
  28. Honmou O, Onodera R, Sasaki M, Waxman SG, Kocsis JD (2012) Mesenchymal stem cells: therapeutic outlook for stroke. Trends Mol Med 18:292–297CrossRefPubMedGoogle Scholar
  29. Houschyar KS, Momeni A, Pyles MN, Cha JY, Maan ZN, Duscher D et al (2016) The role of current techniques and concepts in peripheral nerve repair. Plast Surg Int 2016:4175293PubMedPubMedCentralGoogle Scholar
  30. Illich DJ, Demir N, Stojković M, Scheer M, Rothamel D, Neugebauer J et al (2011) Concise review: induced pluripotent stem cells and lineage reprogramming: prospects for bone regeneration. Stem Cells 29:555–563CrossRefPubMedGoogle Scholar
  31. Itoh M, Umegaki-Arao N, Guo Z, Liu L, Higgins CA, Christiano AM (2013) Generation of 3D skin equivalents fully reconstituted from human induced pluripotent stem cells (iPSCs). PLoS ONE 8:e77673CrossRefPubMedPubMedCentralGoogle Scholar
  32. Ji J, Tong X, Huang X, Zhang J, Qin H, Hu Q (2016) Patient-derived human induced pluripotent stem cells from gingival fibroblasts composited with defined nanohydroxyapatite/chitosan/gelatin porous scaffolds as potential bone graft substitutes. Stem Cells Transl Med 5:95–105CrossRefPubMedGoogle Scholar
  33. Jin GZ, Kim TH, Kim JH, Won JE, Yoo SY, Choi SJ et al (2013) Bone tissue engineering of induced pluripotent stem cells cultured with macrochanneled polymer scaffold. J Biomed Mater Res A 101:1283–1291CrossRefPubMedGoogle Scholar
  34. Kaigler D, Pagni G, Park CH, Braun TM, Holman LA, Yi E et al (2013) Stem cell therapy for craniofacial bone regeneration: a randomized, controlled feasibility trial. Cell Transplant 22(5):767–777CrossRefPubMedPubMedCentralGoogle Scholar
  35. Karamouzian S, Nematollahi-Mahani SN, Nakhaee N, Eskandary H (2012) Clinical safety and primary efficacy of bone marrow mesenchymal cell transplantation in subacute spinal cord injured patients. Clin Neurol Neurosurg 114:935–939CrossRefPubMedGoogle Scholar
  36. Khazaei M, Siddiqui AM, Fehlings MG (2015) The potential for iPS-derived stem cells as a therapeutic strategy for spinal cord injury: opportunities and challenges. J Clin Med. 4:37–65CrossRefGoogle Scholar
  37. Kim WS, Park BS, Sung JH (2009) The wound healing and antioxidant effects of adipose-derived stem cells. Expert Opin Biol Ther 9:879–887CrossRefPubMedGoogle Scholar
  38. Kim JH, Jung M, Kim HS, Kim YM, Choi EH (2011) Adipose-derived stem cells as a new therapeutic modality for ageing skin. Exp Dermatol 20:383–387CrossRefPubMedGoogle Scholar
  39. King A, Balaji S, Keswani SG, Crombleholme TM (2014) The role of stem cells in wound angiogenesis. Adv Wound Care (New Rochelle) 3:614–625CrossRefGoogle Scholar
  40. Kocsis JD, Honmou O (2012) Bone marrow stem cells in experimental stroke. Prog Brain Res 201:79–98CrossRefPubMedGoogle Scholar
  41. Kucerova L, Skolekova S, Matuskova M, Bohac M, Kozovska Z (2013) Altered features and increased chemosensitivity of human breast cancer cells mediated by adipose tissue-derived mesenchymal stromal cells. BMC Cancer 13:535CrossRefPubMedPubMedCentralGoogle Scholar
  42. Lohsiriwat V, Curigliano G, Rietjens M, Goldhirsch A, Petit JY (2011) Autologous fat transplantation in patients with breast cancer: “silencing” or “fueling” cancer recurrence? Breast 20:351–357CrossRefPubMedGoogle Scholar
  43. Lu P, Woodruff G, Wang Y, Graham L, Hunt M, Wu D et al (2014) Long-distance axonal growth from human induced pluripotent stem cells after spinal cord injury. Neuron 83:789–796CrossRefPubMedPubMedCentralGoogle Scholar
  44. Lv Y, Nan P, Chen G, Sha Y, Xia B, Yang L (2015) In vivo repair of rat transected sciatic nerve by low-intensity pulsed ultrasound and induced pluripotent stem cells derived neural crest stem cells. Biotechnol Lett 37:2497–2506CrossRefPubMedGoogle Scholar
  45. Malhotra A, Pelletier MH, Yu Y, Walsh WR (2013) Can platelet-rich plasma (PRP) improve bone healing? A comparison between the theory and experimental outcomes. Arch Orthop Trauma Surg 133:153–165CrossRefPubMedGoogle Scholar
  46. Masuda T, Furue M, Matsuda T (2004) Novel strategy for soft tissue augmentation based on transplantation of fragmented omentum and preadipocytes. Tissue Eng 10:1672–1683CrossRefPubMedGoogle Scholar
  47. Matsumoto D, Sato K, Gonda K, Takaki Y, Shigeura T, Sato T et al (2006) Cell-assisted lipotransfer: supportive use of human adipose-derived cells for soft tissue augmentation with lipoinjection. Tissue Eng 12:3375–3382CrossRefPubMedGoogle Scholar
  48. Matthes SM, Reimers K, Janssen I, Liebsch C, Kocsis JD, Vogt PM, Radtke C (2013) Intravenous transplantation of mesenchymal stromal cells to enhance peripheral nerve regeneration. Biomed Res Int 2013:573169CrossRefPubMedPubMedCentralGoogle Scholar
  49. Mesimäki K, Lindroos B, Törnwall J, Mauno J, Lindqvist C, Kontio R, Miettinen S, Suuronen R (2009) Novel maxillary reconstruction with ectopic bone formation by GMP adipose stem cells. Int J Oral Maxillofac Surg 38:201–209CrossRefPubMedGoogle Scholar
  50. Mestak O, Hromadkova V, Fajfrova M, Molitor M, Mestak J (2016) Evaluation of oncological safety of fat grafting after breast-conserving therapy: a prospective study. Ann Surg Oncol 23:776–781CrossRefPubMedGoogle Scholar
  51. Mizushima T, Takahashi H, Takeyama H, Naito A, Haraguchi N, Uemura M, Nishimura J, Hata T, Takemasa I, Yamamoto H, Doki Y (2016) A clinical trial of autologous adipose-derived regenerative cell transplantation for a postoperative enterocutaneous fistula. Surg Today 46(7):835–842Google Scholar
  52. Moseley TA, Zhu M, Hedrick MH (2006) Adipose-derived stem and progenitor cells as fillers in plastic and reconstructive surgery. Plast Reconstr Surg 118:121S–128SCrossRefPubMedGoogle Scholar
  53. Nutt SE, Chang EA, Suhr ST, Schlosser LO, Mondello SE, Moritz CT et al (2013) Caudalized human iPSC-derived neural progenitor cells produce neurons and glia but fail to restore function in an early chronic spinal cord injury model. Exp Neurol 248:491–503CrossRefPubMedPubMedCentralGoogle Scholar
  54. Ojeh N, Pastar I, Tomic-Canic M, Stojadinovic O (2015) Stem cells in skin regeneration, wound healing, and their clinical applications. Int J Mol Sci 16:25476–25501CrossRefPubMedPubMedCentralGoogle Scholar
  55. Pallua N, Baroncini A, Alharbi Z, Stromps JP (2014) Improvement of facial scar appearance and microcirculation by autologous lipofilling. J Plast Reconstr Aesthet Surg 67:1033–1037CrossRefPubMedGoogle Scholar
  56. Patterson M, Chan DN, Ha I, Case D, Cui Y, Van Handel B et al (2012) Defining the nature of human pluripotent stem cell progeny. Cell Res 22:178–193CrossRefPubMedGoogle Scholar
  57. Petite H, Viateau V, Bensaid W, Meunier A, de Pollak C, Bourguignon M et al (2000) Tissue-engineered bone regeneration. Nat Biotechnol 18:959–963CrossRefPubMedGoogle Scholar
  58. Qin YX, Hu M (2014) Mechanotransduction in musculoskeletal tissue regeneration: effects of fluid flow, loading, and cellular-molecular pathways. Biomed Res Int 2014:863421PubMedPubMedCentralGoogle Scholar
  59. Rigotti G, Marchi A, Galiè M, Baroni G, Benati D, Krampera M et al (2007) Clinical treatment of radiotherapy tissue damage by lipoaspirate transplant: a healing process mediated by adipose-derived adult stem cells. Plast Reconstr Surg 119:1409–1422CrossRefPubMedGoogle Scholar
  60. Romito A, Cobellis G (2016) Pluripotent stem cells Current understanding and future directions. Stem Cells Int 2016:9451492Google Scholar
  61. Sándor GK (2012) Tissue engineering of bone: clinical observations with adipose-derived stem cells, resorbable scaffolds, and growth factors. Ann Maxillofac Surg 2:8–11CrossRefPubMedPubMedCentralGoogle Scholar
  62. Sebastiano V, Zhen HH, Haddad B, Bashkirova E, Melo SP, Wang P et al (2014) Human COL7A1-corrected induced pluripotent stem cells for the treatment of recessive dystrophic epidermolysis bullosa. Sci Transl Med 6:264ra163CrossRefPubMedPubMedCentralGoogle Scholar
  63. Selek O, Buluç L, Muezzinoğlu B, Ergün RE, Ayhan S, Karaöz E (2014) Mesenchymal stem cell application improves tendon healing via anti-apoptotic effect (Animal study). Acta Orthop Traumatol Turc 48(2):187–195CrossRefPubMedGoogle Scholar
  64. Teng S, Liu C, Krettek C, Jagodzinski M (2014) The application of induced pluripotent stem cells for bone regeneration: current progress and prospects. Tissue Eng Part B Rev 20(4):328–339CrossRefPubMedGoogle Scholar
  65. Thien TB, Becker JH, Theis JC (2004) Rehabilitation after surgery for flexor tendon injuries in the hand. Cochrane Database Syst Rev 4:CD003979Google Scholar
  66. Tissiani LA, Alonso N (2016) A prospective and controlled clinical trial on stromal vascular fraction enriched fat grafts in secondary breast reconstruction. Stem Cells Int 2016:2636454CrossRefPubMedGoogle Scholar
  67. Uemura T, Takamatsu K, Ikeda M, Okada M, Kazuki K, Ikada Y, Nakamura H (2012) Transplantation of induced pluripotent stem cell-derived neurospheres for peripheral nerve repair. Biochem Biophys Res Commun 419:130–135CrossRefPubMedGoogle Scholar
  68. Uemura T, Ikeda M, Takamatsu K, Yokoi T, Okada M, Nakamura H (2014) Long-term efficacy and safety outcomes of transplantation of induced pluripotent stem cell-derived neurospheres with bioabsorbable nerve conduits for peripheral nerve regeneration in mice. Cells Tissues Organs 200:78–91CrossRefPubMedGoogle Scholar
  69. Ulicna M, Danisovic L, Vojtassak J (2010) Does cell therapy and tissue engineering represent a promising treatment of diabetic foot ulcers? Bratisl Lek Listy 111:138–143PubMedGoogle Scholar
  70. Umegaki-Arao N, Pasmooij AM, Itoh M, Cerise JE, Guo Z, Levy B et al (2014) Induced pluripotent stem cells from human revertant keratinocytes for the treatment of epidermolysis bullosa. Sci Transl Med 6:264ra164CrossRefPubMedGoogle Scholar
  71. Wu Y, Chen L, Scott P, Tredget E (2007) Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis. Stem Cells 25:2648–2659CrossRefPubMedGoogle Scholar
  72. Xu Q, Wang L, Li H, Han Q, Li J, Qu X, Huang S, Zhao RC (2012) Mesenchymal stem cells play a potential role in regulating the establishment and maintenance of epithelial-mesenchymal transition in MCF7 human breast cancer cells by paracrine and induced autocrine TGF-β. Int J Oncol 41:959–968PubMedGoogle Scholar
  73. Xu W, Wang Y, Liu E, Sun Y, Luo Z, Xu Z et al (2013) Human iPSC-derived neural crest stem cells promote tendon repair in a rat patellar tendon window defect model. Tissue Eng Part A 19:2439–2451CrossRefPubMedPubMedCentralGoogle Scholar
  74. Yamada Y, Ueda M, Naiki T, Nagasaka T (2004) Tissue-engineered injectable bone regeneration for osseointegrated dental implants. Clin Oral Implants Res 15:589–597CrossRefPubMedGoogle Scholar
  75. Yang R, Zheng Y, Burrows M, Liu S, Wei Z, Nace A et al (2014) Generation of folliculogenic human epithelial stem cells from induced pluripotent stem cells. Nat Commun 5:3071PubMedPubMedCentralGoogle Scholar
  76. Yoshimura K, Sato K, Aoi N, Kurita M, Hirohi T, Harii K (2008) Cell-assisted lipotransfer for cosmetic breast augmentation: supportive use of adipose-derived stem/stromal cells. Aesthetic Plast Surg 32:48–55CrossRefPubMedGoogle Scholar
  77. Yu DA, Han J, Kim BS (2012) Stimulation of chondrogenic differentiation of mesenchymal stem cells. Int J Stem Cells 5:16–22CrossRefPubMedPubMedCentralGoogle Scholar
  78. Zhang J, Guan J, Niu X, Hu G, Guo S, Li Q et al (2015a) Exosomes released from human induced pluripotent stem cells-derived MSCs facilitate cutaneous wound healing by promoting collagen synthesis and angiogenesis. J Transl Med 13:49CrossRefPubMedPubMedCentralGoogle Scholar
  79. Zhang C, Yuan H, Liu H, Chen X, Lu P, Zhu T et al (2015b) Well-aligned chitosan-based ultrafine fibers committed teno-lineage differentiation of human induced pluripotent stem cells for Achilles tendon regeneration. Biomaterials 53:716–730CrossRefPubMedGoogle Scholar
  80. Zuk PA (2010) The adipose-derived stem cell: looking back and looking ahead. Mol Biol Cell 21:1783–1787CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Plastic, Reconstructive and Aesthetic Surgery, Faculty of MedicineComenius University in Bratislava and University HospitalBratislavaSlovakia
  2. 2.Institute of Histology and Embryology, Faculty of MedicineComenius University in BratislavaBratislavaSlovakia
  3. 3.Department of the Oromaxillofacial Surgery, Faculty of MedicineComenius University in Bratislava and University HospitalBratislavaSlovakia
  4. 4.Department of Orthopaedics, Faculty of MedicineComenius University in Bratislava and Children’s University HospitalBratislavaSlovakia
  5. 5.Department of Burn Surgery and Reconstructive Surgery, Faculty of MedicineComenius University in Bratislava and University HospitalBratislavaSlovakia

Personalised recommendations