Advertisement

Cell and Tissue Banking

, Volume 17, Issue 4, pp 653–663 | Cite as

Liver diseases: what is known so far about the therapy with human amniotic membrane?

  • Sara Guerra
  • Ana Catarina MamedeEmail author
  • Maria João Carvalho
  • Mafalda Laranjo
  • José Guilherme Tralhão
  • Ana Margarida Abrantes
  • Cláudio Jorge Maia
  • Maria Filomena Botelho
Full Length Review

Abstract

Liver, the largest intern organ of the human body, is responsible for several vital tasks such as digestive and excretory functions, as well as for nutrients storage and metabolic functions, synthesis of new molecules and purification of toxic chemicals. Cirrhosis, fibrosis and hepatocellular carcinoma are the most prevalent liver diseases. Despite all the studies performed so far, treatment options for these diseases are very limited. For this reason, it is urgent to find effective therapies for these pathologies. Several studies have been performed during the last decade about the possible application of human amniotic membrane in hepatic diseases therapy. Promising results about human amniotic membrane or its derived cells, in vitro and in vivo, applications in fibrosis, cirrhosis and hepatocellular carcinoma were already published. Since it is an attractive study area, it is becoming a dynamic scientific subject. However, the action mechanisms of human amniotic membrane and its derived cells in hepatic diseases therapy must be precisely known in order that this promising therapy could be clinically used.

Keywords

Liver diseases Fibrosis Cirrhosis Hepatocellular carcinoma Human amniotic membrane 

Notes

Acknowledgments

Ana Catarina Mamede (SFRH/BD/73649/2010) and Maria João Carvalho (SFRH/SINTD/60068/2009) wishes to thank to Portuguese Foundation for Science and Technology for their PhD Grants.

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflicts of interest.

References

  1. Abdel-Misih SRZ, Bloomston M (2010) Liver anatomy. Surg Clin North Am 90(4):643–653CrossRefPubMedPubMedCentralGoogle Scholar
  2. Adinolfi M, Akle CA, McColl I, Fensom AH, Tansley L, Connolly P, Hsi BL, Faulk WP, Travers P, Bodmer WF (1982) Expression of HLA antigens, beta 2-microglobulin and enzymes by human amniotic epithelial cells. Nature 295(5847):325–327Google Scholar
  3. Ahmed I, Lobo DN (2009) Malignant tumours of the liver. Surgery 27(1):30–37Google Scholar
  4. Alcolado R, Arthur MJ, Iredale JP (1997) Pathogenesis of liver fibrosis. Clin Sci 92(2):103–112CrossRefPubMedGoogle Scholar
  5. Bataller R, Brenner DA (2005) Liver fibrosis. J Clin Investig 115(2):209–218CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bismuth H (2013) Revisiting liver anatomy and terminology of hepatectomies. Ann Surg 257(3):383–386CrossRefPubMedGoogle Scholar
  7. Blonski W, Kotlyar DS, Forde KA (2010) Non-viral causes of hepatocellular carcinoma. World J Gastroenterol 16(29):3603–3615CrossRefPubMedPubMedCentralGoogle Scholar
  8. Brandão DF, Ramalho LN, Ramalho FS, Zucoloto S, Martinelli Ade L, Silva Ode C (2006) Liver cirrhosis and hepatic stellate cells. Acta Cirúrgica Brasileira 21(1):54–57Google Scholar
  9. Brito AF, Mendes M, Abrantes AM, Tralhão JG, Botelho MF (2014) Positron emission tomography diagnostic imaging in multidrug-resistant hepatocellular carcinoma: focus on 2-deoxy-2-(18F)fluoro-d-glucose. Mol Diagn Ther 18(5):495–504CrossRefPubMedGoogle Scholar
  10. Bruix J, Sherman M (2011) Management of hepatocellular carcinoma: an update. Hepatology 53(3):1020–1022CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bruix J, Boix L, Sala M, Llovet JM (2004) Focus on hepatocellular carcinoma. Cancer Cell 5(3):215–219CrossRefPubMedGoogle Scholar
  12. Bryant-Greenwood GD (1998) The extracellular matrix of the human fetal membranes: structure and function. Placenta 19:1–11CrossRefPubMedGoogle Scholar
  13. Byass P (2014) The global burden of liver disease: a challenge for methods and for public health. BMC Med 12(1):159CrossRefPubMedPubMedCentralGoogle Scholar
  14. Carlson BM (ed) (2014) “Placenta and extraembryonic membranes.” In: Human embryology and developmental biology. Elsevier, Amsterdam, pp 131–52Google Scholar
  15. Coradini D, Casarsa C, Oriana S (2011) Epithelial cell polarity and tumorigenesis: new perspectives for cancer detection and treatment. Acta Pharmacol Sin 32(5):552–564CrossRefPubMedPubMedCentralGoogle Scholar
  16. Dong MH, Saab S (2008) Complications of cirrhosis. Dis Mon 54(7):445–456CrossRefPubMedGoogle Scholar
  17. El-Serag HB, Rudolph KL (2007) Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology 132(7):2557–2576CrossRefPubMedGoogle Scholar
  18. Endo K, Nakamura T, Kawasaki S, Kinoshita S (2004) Human amniotic membrane, like corneal epithelial basement membrane, manifests the 5 chain of type IV collagen. Invest Ophthalmol Vis Sci 45(6):1771–1774CrossRefPubMedGoogle Scholar
  19. Evangelista M, Soncini M, Parolini O (2008) Placenta-derived stem cells: new hope for cell therapy? Cytotechnology 58(1):33–42CrossRefPubMedPubMedCentralGoogle Scholar
  20. Ferlay J et al (2013) GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 11 [internet]. Lyon, France: International Agency for Research on Cancer; 2013. http://globocan.iarc.fr
  21. Friedman SL (2008) Mechanisms of hepatic fibrogenesis. Gastroenterology 134(6):1655–1669CrossRefPubMedPubMedCentralGoogle Scholar
  22. Ganong WF (2005) Review of medical physiology (LANGE Basic Science), 22nd edn. McGraw-Hill Medical, New YorkGoogle Scholar
  23. Giglia JL et al (2010) Systemic therapy for advanced hepatocellular carcinoma: past, present, and future. Cancer Control 17(2):120–129PubMedGoogle Scholar
  24. Gomes MA, Priolli DG, Tralhão JG, Botelho MF (2013) Hepatocellular carcinoma: epidemiology, biology, diagnosis and therapies. Revista Da Associação Médica Brasileira 59(5):514–524CrossRefPubMedGoogle Scholar
  25. Goodman ZD (2007) Neoplasms of the liver. Mod Pathol 20(2006):S49–S60CrossRefPubMedGoogle Scholar
  26. Gray H, Lewis WH (2000) Gray’s anatomy of the human body, 20th edn. Bartleby, New YorkGoogle Scholar
  27. Gude NM, Roberts CT, Kalionis B, King RG (2004) Growth and function of the normal human placenta. Thromb Res 114(5–6):397–407CrossRefPubMedGoogle Scholar
  28. Han YP (2006) Matrix metalloproteinases, the pros and cons, in the liver fibrosis. J Gastroenterol Hepatol 21(Suppl 3):S88–S91CrossRefPubMedPubMedCentralGoogle Scholar
  29. Hao Y, Ma DH, Hwang DG, Kim WS, Zhang F (2000) Identification of antiangiogenic and antiinflammatory proteins in human amniotic membrane. Cornea 19(3):348–352CrossRefPubMedGoogle Scholar
  30. He H et al (2009) Biochemical characterization and function of complexes formed by hyaluronan and the heavy chains of inter-alpha-inhibitor (HC*HA) purified from extracts of human amniotic membrane. J Biol Chem 284(30):20136–20146CrossRefPubMedPubMedCentralGoogle Scholar
  31. Higa K, Shimmura S, Shimazaki J, Tsubota K (2005) Hyaluronic acid-CD44 interaction mediates the adhesion of lymphocytes by amniotic membrane stroma. Cornea 24(2):206–212CrossRefPubMedGoogle Scholar
  32. Hoekstra LT et al (2013) Physiological and biochemical basis of clinical liver function tests: a review. Ann Surg 257(1):27–36CrossRefPubMedGoogle Scholar
  33. In ’t Anker PS et al (2004) Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells 22(7):1338–1345CrossRefPubMedGoogle Scholar
  34. Jackson G, Whitfield P (1985) Digestion: fueling the system (Library of the Human Body). Torstar Books, New YorkGoogle Scholar
  35. Jiang A et al (2006) In vivo and in vitro inhibitory effect of amniotic extraction on neovascularization. Cornea 25(10):S36–S40CrossRefPubMedGoogle Scholar
  36. Johnson PJ (2000) Systemic chemotherapy of liver tumors. Semin Surg Oncol 19(2):116–124CrossRefPubMedGoogle Scholar
  37. Kang NH et al (2012) Potential antitumor therapeutic strategies of human amniotic membrane and amniotic fluid-derived stem cells. Cancer Gene Ther 19(8):517–522CrossRefPubMedGoogle Scholar
  38. Kesting MR, Wolff KD, Nobis CP, Rohleder NH (2014) Amniotic membrane in oral and maxillofacial surgery. Oral Maxillofac Surg 18:153–164CrossRefPubMedGoogle Scholar
  39. Krizhanovsky V et al (2008) Senescence of activated stellate cells limits liver fibrosis. Cell 134(4):657–667CrossRefPubMedPubMedCentralGoogle Scholar
  40. Kubo M, Sonoda Y, Muramatsu R, Usui M (2001) Immunogenicity of human amniotic membrane in experimental xenotransplantation. Invest Ophthalmol Vis Sci 42(7):1539–1546Google Scholar
  41. Levrero M (2006) Viral hepatitis and liver cancer: the case of hepatitis C. Oncogene 25(27):3834–3847CrossRefPubMedGoogle Scholar
  42. Li H et al (2005) Immunosuppressive factors secreted by human amniotic epithelial cells. Invest Ophthalmol Vis Sci 46(3):900–907CrossRefPubMedGoogle Scholar
  43. Li W, He H, Kawakita T, Espana EM, Tseng SCG (2006) Amniotic membrane induces apoptosis of interferon-gamma activated macrophages in vitro. Exp Eye Res 82(2):282–292CrossRefPubMedGoogle Scholar
  44. Lin JS et al (2015) Hepatic differentiation of human amniotic epithelial cells and in vivo therapeutic effect on animal model of cirrhosis. J Gastroenterol Hepatol 30(11):1673–1682Google Scholar
  45. Llovet JM et al (2008) Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 359(4):378–390CrossRefPubMedGoogle Scholar
  46. Ma S et al (2010) Approach to radiation therapy in hepatocellular carcinoma. Cancer Treat Rev 36(2):157–163CrossRefPubMedGoogle Scholar
  47. Malhi H, Guicciardi ME, Gores GJ (2010) Hepatocyte death: a clear and present danger. Physiol Rev 90(3):1165–1194CrossRefPubMedPubMedCentralGoogle Scholar
  48. Mamede AC, Botelho MF (eds) (2015) Amniotic membrane, 1st edn. Springer, NetherlandsGoogle Scholar
  49. Mamede AC et al (2012) Amniotic membrane: from structure and functions to clinical applications. Cell Tissue Res 349(2):447–458CrossRefPubMedGoogle Scholar
  50. Mamede AC, Laranjo M, Carvalho MJ, Abrantes AM, Pires AS (2014) Effect of amniotic membrane proteins in human cancer cell lines: an exploratory study. J Membr Biol 247(4):357–360CrossRefPubMedGoogle Scholar
  51. Mamede AC et al (2015) Selective cytotoxicity and cell death induced by human amniotic membrane in hepatocellular carcinoma. Med Oncol 32(12):257CrossRefPubMedGoogle Scholar
  52. Mamede AC et al (2016) Oxidative stress, DNA, cell cycle/cell cycle associated proteins and multidrug resistance proteins: targets of human amniotic membrane in hepatocellular carcinoma. Pathol Oncol Res (in press)Google Scholar
  53. Manuelpillai U et al (2010) Transplantation of human amnion epithelial cells reduces hepatic fibrosis in immunocompetent CCl4-treated mice. Cell Transpl 19(9):1157–1168CrossRefGoogle Scholar
  54. Manuelpillai U, Moodley Y, Borlongan CV, Parolini O (2011) Amniotic membrane and amniotic cells: potential therapeutic tools to combat tissue inflammation and fibrosis? Placenta 32:S320–S325CrossRefPubMedGoogle Scholar
  55. Manuelpillai U et al (2012) Human amniotic epithelial cell transplantation induces markers of alternative macrophage activation and reduces established hepatic fibrosis. PLoS ONE 7(6):1–11CrossRefGoogle Scholar
  56. Marongiu F et al (2011) Hepatic differentiation of amniotic epithelial cells. Hepatology (Baltimore, Md) 53(5):1719–1729CrossRefGoogle Scholar
  57. McMillan B (2008) The illustrated atlas of the human Body, 1st edn. Weldon Owen Pty Ltd, McMahons PointGoogle Scholar
  58. Miki T (2011) Amnion-derived stem cells: in quest of clinical applications. Stem Cell Res Ther 2(3):25CrossRefPubMedPubMedCentralGoogle Scholar
  59. Miki T, Lehmann T, Cai H, Stolz DB, Strom SC (2005) Stem cell characteristics of amniotic epithelial cells. Stem Cells 23(10):1549–1559CrossRefPubMedGoogle Scholar
  60. Neuveut C, Wei Y, Buendia MA (2010) Mechanisms of HBV-related hepatocarcinogenesis. J Hepatol 52(4):594–604CrossRefPubMedGoogle Scholar
  61. Niknejad H et al (2008) Properties of the amniotic membrane for potential use in tissue engineering. Eur Cells Mater 15:88–99Google Scholar
  62. Niknejad H, Paeini-Vayghan G, Tehrani FA, Khayat-Khoei M, Peirovi H (2013) Side dependent effects of the human amnion on angiogenesis. Placenta 34(4):340–345CrossRefPubMedGoogle Scholar
  63. Niknejad H, Khayat-Khoei M, Peirovi H, Abolghasemi H (2014) Human amniotic epithelial cells induce apoptosis of cancer cells: a new anti-tumor therapeutic strategy. Cytotherapy 16(1):33–40CrossRefPubMedGoogle Scholar
  64. Nusrat A, Khan MS, Fazili J, Madhoun MF (2014) Cirrhosis and its complications: evidence based treatment. World J Gastroenterol 20(18):5442–5460CrossRefPubMedPubMedCentralGoogle Scholar
  65. Parolini O et al (2008) Concise review: isolation and characterization of cells from human term placenta (outcome of the first international workshop on placenta derived stem cells). Stem Cells 26(2):300–311CrossRefPubMedGoogle Scholar
  66. Pinzani M, Rombouts K (2004) Liver fibrosis: from the bench to clinical targets. Dig Liver Dis 36(4):231–242CrossRefPubMedGoogle Scholar
  67. Prieto M et al (1999) High incidence of allograft cirrhosis in hepatitis C virus genotype 1b infection following transplantation: relationship with rejection episodes. Hepatology 29(1):250–256CrossRefPubMedGoogle Scholar
  68. Puglisi MA et al (2011) Therapeutic implications of mesenchymal stem cells in liver injury. J Biomed Biotech 2011:860578CrossRefGoogle Scholar
  69. Qin L, Han YP (2010) Epigenetic repression of matrix metalloproteinases in myofibroblastic hepatic stellate cells through histone deacetylases 4: implication in tissue fibrosis. Am J Pathol 177(4):1915–1928CrossRefPubMedPubMedCentralGoogle Scholar
  70. Ricci E et al (2013) Anti-fibrotic effects of fresh and cryopreserved human amniotic membrane in a rat liver fibrosis model. Cell Tissue Bank 14(3):475–488CrossRefPubMedGoogle Scholar
  71. Sant’Anna LB, Cargnoni A, Ressel L, Vanosi G, Parolini O (2011) Amniotic membrane application reduces liver fibrosis in a bile duct ligation rat model. Cell Transpl 20(3):441–453CrossRefGoogle Scholar
  72. Schuppan D, Afdhal NH (2008) Liver cirrhosis. Lancet 371:838–851CrossRefPubMedPubMedCentralGoogle Scholar
  73. Seeley R, Stephens T, Tate P (2003) Anatomy and physiology, 6th edn. McGraw-Hill Companies Inc, New YorkGoogle Scholar
  74. Seo JH, Kim YH, Kim JS (2008) Properties of the amniotic membrane may be applicable in cancer therapy. Med Hypotheses 70(4):812–814CrossRefPubMedGoogle Scholar
  75. Shao C et al (2004) Suppression of corneal neovascularization by pedf release from human amniotic membranes. Invest Ophthalmol Vis Sci 45(6):1758–1762CrossRefPubMedGoogle Scholar
  76. Shimmura S, Shimazaki J, Ohashi Y, Tsubota K (2001) Antiinflammatory effects of amniotic membrane transplantation in ocular surface disorders. Cornea 20(4):408–413CrossRefPubMedGoogle Scholar
  77. Tahara Y, Shibata S (2016) Circadian rhythms of liver physiology and disease: experimental and clinical evidence. Nat Rev Gastroenterol Hepatol 13(4):217–226CrossRefPubMedGoogle Scholar
  78. Takashima S, Ise H, Zhao P, Akaike T, Nikaido T (2004) Human amniotic epithelial cells possess hepatocyte-like characteristics and functions. Cell Struct Funct 29(3):73–84CrossRefPubMedGoogle Scholar
  79. Tamagawa T, Oi S, Ishiwata I, Ishikawa H, Nakamura Y (2007) Differentiation of mesenchymal cells derived from human amniotic membranes into hepatocyte-like cells in vitro. Hum Cell 20(3):77–84CrossRefPubMedGoogle Scholar
  80. Thorgeirsson SS, Grisham JW (2002) Molecular pathogenesis of human hepatocellular carcinoma. Nat Genet 31(August):339–346CrossRefPubMedGoogle Scholar
  81. Toda A, Okabe M, Yoshida T, Nikaido T (2007) The potential of amniotic membrane/amnion-derived cells for regeneration of various tissues. J Pharmacol Sci 228:215–228CrossRefGoogle Scholar
  82. Tralhão JG et al (2013) Hepatectomy and liver regeneration: from experimental research to clinical application. ANZ J Surg 84:665–671CrossRefPubMedGoogle Scholar
  83. Tsukada S, Parsons CJ, Rippe RA (2006) Mechanisms of liver fibrosis. Clin Chim Acta 364(1–2):33–60CrossRefPubMedGoogle Scholar
  84. Ueta M et al (2002) Immunosuppressive properties of human amniotic membrane for mixed lymphocyte reaction. Clin Exp Immunol 129(3):464–470CrossRefPubMedPubMedCentralGoogle Scholar
  85. Villanueva A, Llovet JM (2011) Targeted therapies for hepatocellular carcinoma. Gastroenterology 140(5):1410–1426CrossRefPubMedPubMedCentralGoogle Scholar
  86. Wiesner RH et al (1998) Acute hepatic allograft rejection: incidence, risk factors and impact on outcome. Hepatology 28(3):638–645CrossRefPubMedGoogle Scholar
  87. Wolbank A et al (2007) Labelling of human adipose-derived stem cells for non-invasive in vivo cell tracking. Cell Tissue Bank 8(3):163–177CrossRefPubMedGoogle Scholar
  88. Wörns MA, Galle PR (2010) Future perspectives in hepatocellular carcinoma. Dig Liver Dis 42(3):302–309CrossRefGoogle Scholar
  89. Wrzesinski SJ, Taddei TH, Strazzabosco M (2013) Systemic therapy in hepatocellular carcinoma. Clin Liver Dis 15(2):423–441CrossRefGoogle Scholar
  90. Yang JD, Roberts LR (2010) Hepatocellular carcinoma: a global view. Nat Rev Gastroenterol Hepatol 7(8):448–458CrossRefPubMedPubMedCentralGoogle Scholar
  91. Yeo W et al (2005) A randomized phase III study of doxorubicin versus cisplatin/interferon alpha-2b/doxorubicin/fluorouracil (PIAF) combination chemotherapy for unresectable hepatocellular carcinoma. J Natl Cancer Inst 97(20):1532–1538CrossRefPubMedGoogle Scholar
  92. Zhang D, Jiang M, Miao D (2011) Transplanted human amniotic membrane-derived mesenchymal stem cells ameliorate carbon tetrachloride-induced liver cirrhosis in mouse. PLoS ONE 6(2):1–9Google Scholar
  93. Zhou S, Chen J, Feng J (2003) The effects of amniotic membrane on polymorphonuclear cells. Chin Med J 116(5):788–790PubMedGoogle Scholar
  94. Zhou WC, Zhang QB, Qiao L (2014) Pathogenesis of liver cirrhosis. World J Gastroenterol 20(23):7312–7324CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Sara Guerra
    • 1
  • Ana Catarina Mamede
    • 1
    • 2
    • 3
    • 4
    Email author
  • Maria João Carvalho
    • 1
    • 3
    • 4
    • 5
  • Mafalda Laranjo
    • 1
    • 3
    • 4
  • José Guilherme Tralhão
    • 1
    • 3
    • 6
  • Ana Margarida Abrantes
    • 1
    • 3
    • 4
  • Cláudio Jorge Maia
    • 2
  • Maria Filomena Botelho
    • 1
    • 3
    • 4
  1. 1.Biophysics Unit, Faculty of MedicineUniversity of CoimbraCoimbraPortugal
  2. 2.CICS-UBI, Health Sciences Research CentreUniversity of Beira InteriorCovilhãPortugal
  3. 3.CIMAGO, Faculty of MedicineUniversity of CoimbraCoimbraPortugal
  4. 4.CNC.IBILIUniversity of CoimbraCoimbraPortugal
  5. 5.Obstetrics ServiceCoimbra Hospital and University CentreCoimbraPortugal
  6. 6.Surgical Department ACoimbra Hospital and University CentreCoimbraPortugal

Personalised recommendations