Advertisement

Cell and Tissue Banking

, Volume 17, Issue 4, pp 721–734 | Cite as

Ex vivo and in vivo characterization of cold preserved cartilage for cell transplantation

  • Wichaya Sriuttha
  • Nantawat Uttamo
  • Apisek Kongkaew
  • Jongkolnee Settakorn
  • Suchanan Rattanasalee
  • Prachya Kongtawelert
  • Dumnoensun Pruksakorn
  • Peraphan PothacharoenEmail author
Full Length Paper

Abstract

Due to the inconvenient and invasive nature of chondrocyte transplantation, preserved cartilage has been recognized as an alternative source of chondrocytes for implantation. However, there are major concerns, in particular, the viability and quality of the chondrocytes. This study investigated the biochemistry and molecular characterization of chondrocytes isolated from preserved cartilage for purposes of transplantation. Ex vivo characterization was accomplished by storing human cartilage at either 4 or −80 °C in a preservation medium. Microscopic evaluation of the preserved cartilage was conducted after 1, 2, 3 and 6 weeks. The chondrocytes were isolated from the preserved cartilage and investigated for proliferation capacity and chondrogenic phenotype. Transplantation of chondrocytes from preserved cartilage into rabbit knees was performed for purposes of in vivo evaluation. The serum cartilage degradation biomarker (WF6 epitopes) was evaluated during the transplantation procedure. Human cartilage preserved for 1 week in a 10 % DMSO chondrogenic medium at 4 °C gave the highest chondrocyte viability. The isolated chondrocytes showed a high proliferative capacity and retained chondrogenic gene expression. Microscopic assessment of the implanted rabbit knees showed tissue regeneration and integration with the host cartilage. A decreased level of the serum biomarker after transplantation was evidence of in vivo repair by the implanted chondrocytes. These results suggest that cartilage preservation for 1 week in a 10 % DMSO chondrogenic medium at 4 °C can maintain proliferation capacity and the chondrogenic phenotype of human chondrocytes. These results can potentially be applied to in vivo allogeneic chondrocyte transplantation. Allogeneic chondrocytes from preserved cartilage would be expected to maintain their chondrogenic phenotype and to result in a high rate of success in transplanted grafts.

Keywords

Cartilage preservation Chondrocyte survival Human chondrocyte Chondrocyte transplantation 

Notes

Acknowledgments

We thank Dr. Robert G. Larma for his manuscript proofreading. The Faculty of Medicine Research Fund, Chiang Mai University (to DP) and Excellence Center Research Fund, CMU (to PP and PK) have jointly funded this study.

References

  1. Almqvist KF, Wang L, Broddelez C, Veys EM, Verbruggen G (2001a) Biological freezing of human articular chondrocytes. Osteoarthr Cartil 9(4):341–350CrossRefPubMedGoogle Scholar
  2. Almqvist KF, Wang L, Wang J, Baeten D, Cornelissen M, Verdonk R, Veys EM, Verbruggen G (2001b) Culture of chondrocytes in alginate surrounded by fibrin gel: characteristics of the cells over a period of eight weeks. Ann Rheum Dis 60(8):781–790CrossRefPubMedPubMedCentralGoogle Scholar
  3. Al-Shanti N, Saini A, Stewart CE (2009) Two-Step versus One-Step RNA-to-CT 2-Step and One-Step RNA-to-CT 1-Step: validity, sensitivity, and efficiency. J Biomol Tech 20(3):172–179PubMedPubMedCentralGoogle Scholar
  4. Bouroncle BA (1965) Preservation of living cells at −79 °C with dimethyl sulfoxide. Proc Soc Exp Biol Med 119(4):958–961CrossRefPubMedGoogle Scholar
  5. Brittberg M, Winalski CS (2003) Evaluation of cartilage injuries and repair. J Bone Joint Surg Am 85-A(Suppl 2):58–69CrossRefGoogle Scholar
  6. Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L (1994) Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 331(14):889–895CrossRefPubMedGoogle Scholar
  7. Brittberg M, Peterson L, Sjogren-Jansson E, Tallheden T, Lindahl A (2003) Articular cartilage engineering with autologous chondrocyte transplantation. A review of recent developments. J Bone Joint Surg Am 85-A(Suppl 3):109–115CrossRefGoogle Scholar
  8. Doebbler GF, Rinfret AP (1962) The influence of protective compounds and cooling and warming conditions on hemolysis of erythrocytes by freezing and thawing. Biochim Biophys Acta 58:449–458CrossRefPubMedGoogle Scholar
  9. Emmerson BC, Gortz S, Jamali AA, Chung C, Amiel D, Bugbee WD (2007) Fresh osteochondral allografting in the treatment of osteochondritis dissecans of the femoral condyle. Am J Sports Med 35(6):907–914CrossRefPubMedGoogle Scholar
  10. Fahmy MD, Almansoori KA, Laouar L, Prasad V, McGann LE, Elliott JA, Jomha NM (2014) Dose-injury relationships for cryoprotective agent injury to human chondrocytes. Cryobiology 68(1):50–56CrossRefPubMedGoogle Scholar
  11. Fragonas E, Mlynarik V, Jellus V, Micali F, Piras A, Toffanin R, Rizzo R, Vittur F (1998a) Correlation between biochemical composition and magnetic resonance appearance of articular cartilage. Osteoarthr Cartil 6(1):24–32CrossRefPubMedGoogle Scholar
  12. Fragonas E, Pollesello P, Mlinarik V, Toffanin R, Grando C, Godeas C, Vittur F (1998b) Sensitivity of chondrocytes of growing cartilage to reactive oxygen species. Biochim Biophys Acta 1425(1):103–111CrossRefPubMedGoogle Scholar
  13. Gole MD, Poulsen D, Marzo JM, Ko SH, Ziv I (2004) Chondrocyte viability in press-fit cryopreserved osteochondral allografts. J Orthop Res 22(4):781–787CrossRefPubMedGoogle Scholar
  14. Hangody L, Kish G, Karpati Z, Szerb I, Udvarhelyi I (1997) Arthroscopic autogenous osteochondral mosaicplasty for the treatment of femoral condylar articular defects. A preliminary report. Knee Surg Sports Traumatol Arthrosc 5(4):262–267CrossRefPubMedGoogle Scholar
  15. Hiran TS, Moulton PJ, Hancock JT (1998) In situ detection of superoxide anions within porcine articular cartilage. Br J Biomed Sci 55(3):199–203PubMedGoogle Scholar
  16. Judas F, Rosa S, Teixeira L, Lopes C, Ferreira Mendes A (2007) Chondrocyte viability in fresh and frozen large human osteochondral allografts: effect of cryoprotective agents. Transpl Proc 39(8):2531–2534CrossRefGoogle Scholar
  17. Mainil-Varlet P, Aigner T, Brittberg M, Bullough P, Hollander A, Hunziker E, Kandel R, Nehrer S, Pritzker K, Roberts S, Stauffer E, International Cartilage Repair S (2003) Histological assessment of cartilage repair: a report by the Histology Endpoint Committee of the International Cartilage Repair Society (ICRS). J Bone Joint Surg Am 85-A(Suppl 2):45–57CrossRefGoogle Scholar
  18. Mankin HJ (1982) The response of articular cartilage to mechanical injury. J Bone Joint Surg Am 64(3):460–466CrossRefPubMedGoogle Scholar
  19. Mankin HJ, Doppelt SH, Sullivan TR, Tomford WW (1982) Osteoarticular and intercalary allograft transplantation in the management of malignant tumors of bone. Cancer 50(4):613–630CrossRefPubMedGoogle Scholar
  20. Muinos-Lopez E, Rendal-Vazquez ME, Hermida-Gomez T, Fuentes-Boquete I, Diaz-Prado S, Blanco FJ (2012) Cryopreservation effect on proliferative and chondrogenic potential of human chondrocytes isolated from superficial and deep cartilage. Open Orthop J 6:150–159CrossRefPubMedPubMedCentralGoogle Scholar
  21. Nakayama GR, Caton MC, Nova MP, Parandoosh Z (1997) Assessment of the Alamar Blue assay for cellular growth and viability in vitro. J Immunol Methods 204(2):205–208CrossRefPubMedGoogle Scholar
  22. Nganvongpanit K, Itthiarbha A, Ong-Chai S, Kongtawelert P (2008) Evaluation of serum chondroitin sulfate and hyaluronan: biomarkers for osteoarthritis in canine hip dysplasia. J Vet Sci 9(3):317–325CrossRefPubMedPubMedCentralGoogle Scholar
  23. O’Driscoll SW (1998) The healing and regeneration of articular cartilage. J Bone Joint Surg Am 80(12):1795–1812CrossRefPubMedGoogle Scholar
  24. Onuma K, Urabe K, Naruse K, Park HJ, Uchida K, Itoman M (2009) Cold preservation of rat osteochondral tissues in two types of solid organ preservation solution, culture medium and saline. Cell Tissue Bank 10(1):1–9CrossRefPubMedGoogle Scholar
  25. Panseri S, Russo A, Cunha C, Bondi A, Di Martino A, Patella S, Kon E (2012) Osteochondral tissue engineering approaches for articular cartilage and subchondral bone regeneration. Knee Surg Sports Traumatol Arthrosc 20(6):1182–1191CrossRefPubMedGoogle Scholar
  26. Pegg DE (2006) The preservation of tissues for transplantation. Cell Tissue Bank 7(4):349–358CrossRefPubMedGoogle Scholar
  27. Pegg DE, Wang L, Vaughan D (2006a) Cryopreservation of articular cartilage. Part 3: the liquidus-tracking method. Cryobiology 52(3):360–368CrossRefPubMedGoogle Scholar
  28. Pegg DE, Wang L, Vaughan D, Hunt CJ (2006b) Cryopreservation of articular cartilage. Part 2: mechanisms of cryoinjury. Cryobiology 52(3):347–359CrossRefPubMedGoogle Scholar
  29. Pegg DE, Wusteman MC, Wang L (2006c) Cryopreservation of articular cartilage. Part 1: conventional cryopreservation methods. Cryobiology 52(3):335–346CrossRefPubMedGoogle Scholar
  30. Phornphutkul C, Wu KY, Gruppuso PA (2006) The role of insulin in chondrogenesis. Mol Cell Endocrinol 249(1–2):107–115CrossRefPubMedGoogle Scholar
  31. Pothacharoen P, Siriaunkgul S, Ong-Chai S, Supabandhu J, Kumja P, Wanaphirak C, Sugahara K, Hardingham T, Kongtawelert P (2006) Raised serum chondroitin sulfate epitope level in ovarian epithelial cancer. J Biochem 140(4):517–524CrossRefPubMedGoogle Scholar
  32. Quarto R, Campanile G, Cancedda R, Dozin B (1992) Thyroid hormone, insulin, and glucocorticoids are sufficient to support chondrocyte differentiation to hypertrophy: a serum-free analysis. J Cell Biol 119(4):989–995CrossRefPubMedGoogle Scholar
  33. Teng MS, Yuen AS, Kim HT (2008) Enhancing osteochondral allograft viability: effects of storage media composition. Clin Orthop Relat Res 466(8):1804–1809CrossRefPubMedPubMedCentralGoogle Scholar
  34. Tomford WW, Fredericks GR, Mankin HJ (1984) Studies on cryopreservation of articular cartilage chondrocytes. J Bone Joint Surg Am 66(2):253–259CrossRefPubMedGoogle Scholar
  35. Tomford WW, Springfield DS, Mankin HJ (1992) Fresh and frozen articular cartilage allografts. Orthopedics 15(10):1183–1188PubMedGoogle Scholar
  36. Williams JM, Ongchi DR, Thonar EJ (1993) Repair of articular cartilage injury following intra-articular chymopapain-induced matrix proteoglycan loss. J Orthop Res 11(5):705–716CrossRefPubMedGoogle Scholar
  37. Williams RJ 3rd, Ranawat AS, Potter HG, Carter T, Warren RF (2007) Fresh stored allografts for the treatment of osteochondral defects of the knee. J Bone Joint Surg Am 89(4):718–726CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Wichaya Sriuttha
    • 1
  • Nantawat Uttamo
    • 2
  • Apisek Kongkaew
    • 3
  • Jongkolnee Settakorn
    • 4
  • Suchanan Rattanasalee
    • 4
  • Prachya Kongtawelert
    • 1
  • Dumnoensun Pruksakorn
    • 2
  • Peraphan Pothacharoen
    • 1
    Email author
  1. 1.Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of MedicineChiang Mai UniversityChiang MaiThailand
  2. 2.Department of Orthopedics, Faculty of MedicineChiang Mai UniversityChiang MaiThailand
  3. 3.Animal House, Faculty of MedicineChiang Mai UniversityChiang MaiThailand
  4. 4.Department of Pathology, Faculty of MedicineChiang Mai UniversityChiang MaiThailand

Personalised recommendations