Cell and Tissue Banking

, Volume 17, Issue 4, pp 603–610 | Cite as

Iranian homograft heart valves: assessment of durability and late outcome

  • Alireza Heidary Rouchi
  • Hassan Radmehr
  • Seyed Amirhosein Tavakoli
  • Tahereh Sadat Jafarzadeh Kashi
  • Mitra Mahdavi-MazdehEmail author


Durability and the rate of complications of homograft heart valves, adjusted for patient-related contributors and surgical techniques, rely mainly on the quality of allografts which in turn are mirrored in the donor characteristics and most importantly recovery and processing procedures. Aimed to assess the quality, a study was conducted to figure out the durability and late outcome following homograft replacement with valved conduits procured by the Iranian Tissue Bank. Retrospectively, the pre-implantation, perioperative and follow-up data of 400 non-consecutive recipients of cryopreserved heart valves (222 pulmonary and 178 aortic) from 2006 to 2015 were collected and analyzed in terms of variables reflecting late outcome including adverse events and durability. In the context of durability, the event of interest was defined as the need for homograft replacement and homograft-related death. The mean follow-up time (SD) of study entrants (male/female ratio, 1.4) was 49.8 (36.3) months. Median age at the time of implantation was 11 years. Total 10-years mortality was 21 % (84/400), including 66.7 % early (30-days mortality: 56/84) and 33.3 % late (28/84). Overall late complication rate was 2 %. Median survival time was 120 months (95 % CI 83.3–156.6). The pulmonary valves appeared to be more durable (P value <0.001) and survival probabilities in small sized grafts were lower (P value 0.008). One-, five-, and ten-year graft survival was 82, 76 and 73 %, respectively. The evidences suggest that the homografts function satisfactory with low rate of late complications; nevertheless, more emphasis should be given to make long-term durability comparable.


Homograft Durability Valve replacement Survival Complication 



The valuable contribution of the colleagues in recipients’ hospitals who shared the patients’ follow-up data deserves authors’ sincere appreciation.


This research was supported by Tehran University of Medical Sciences and Health Services Grant 94-02-52-29229.

Compliance with ethical standards

Conflict of interest

Authors declare no competing interests.


  1. Baltivala SP, Emani S, Mayer JE et al (2012) Pulmonary valve replacement function in adolescents: a comparison of bioprosthetic valves and homograft conduits. Ann Thorac Surg 93:2007–2016CrossRefGoogle Scholar
  2. Bando K, Danielson GK, Schaff HV et al (1995) Outcome of pulmonary and aortic homografts for right ventricular outflow tract reconstruction. J Thorac Cardiovasc Surg 109(3):509–517CrossRefPubMedGoogle Scholar
  3. Barron DJ, Khan NE, Jones TJ et al (2009) What tissue bankers should know about the use of allograft heart valves. Cell Tissue Bank. doi: 10.1007/s10561-009-9132-5 PubMedGoogle Scholar
  4. Boethig D, Thies WR, Hecker H et al (2005) Mid term course after pediatric right ventricular outflow tract reconstruction: a comparison of homografts, porcine xenografts and Contegras. Eur J Cardiothorac Surg 27:58–66CrossRefPubMedGoogle Scholar
  5. Brancaccio G, Polito A, Hoxha S et al (2014) The Ross procedure in patients aged less than 18 years: the midterm results. J Thorac Cardiovasc Surg 147(1):383–388CrossRefPubMedGoogle Scholar
  6. Brose S, Autschbach R, Rauch T et al (2001) Patient-adapted valve selection: biological vs. mechanical heart valve replacement in aortic valve diseases. Z Kardiol Suppl 6:48–57CrossRefGoogle Scholar
  7. Buber J, Assenza GE, Huang A et al (2014) Durability of large diameter right ventricular outflow tract conduits in adults with congenital heart disease. Int J Cardiol 175(3):455–463CrossRefPubMedGoogle Scholar
  8. Chambers J (2014) Prosthetic heart valves. Int J Clin Pract 68(10):1227–1230CrossRefPubMedGoogle Scholar
  9. Charitos EI, Takkenberg JJM, Hanke T et al (2012) Reoperations on the pulmonary autograft and pulmonary homograft after the Ross procedure: an update on the German Dutch Ross Registry. J Thorac Cardiovasc Surg 144(4):813–823CrossRefPubMedGoogle Scholar
  10. Chiappini B, Absil B, Rubay J et al (2007) The Ross procedure: clinical and echocardiographic follow-up in 219 consecutive patients. Ann Thorac Surg 83:1285–1289CrossRefPubMedGoogle Scholar
  11. Ciubotaru A, Cebotari S, Tudorache I et al (2013) Biological heart valves. Biomed Tech 58(5):389–397CrossRefGoogle Scholar
  12. David TE, David C, Woo A et al (2014) The Ross procedure: outcomes at 20 years. J Thorac Cardiovasc Surg 147(1):85–94CrossRefPubMedGoogle Scholar
  13. Delahaye F, Chu VH, Altclas J et al (2015) One-year outcome following biological or mechanical valve replacement for infective endocarditis. Int J Cardiol 178:117–123CrossRefPubMedGoogle Scholar
  14. Delmo Walter EM, de By TM, Meyer R et al (2012) The future of heart valve banking and homografts: perspective from the Deutsches Herzzentrum Berlin. HSR Proc Intensiv Care Cardiovasc Anesth 4(2):97–108Google Scholar
  15. Elkins RC, Lane MM, Mc Cue C et al (2001) Ross operation in children: late results. J Heart Valve Dis 10(6):736–741PubMedGoogle Scholar
  16. Etnel JRG, Elmont LC, Ertekin E et al (2016) Outcome after aortic valve replacement in children: a systematic review and meta-analysis. J Thorac Cardiovasc Surg 151(1):143–152CrossRefPubMedGoogle Scholar
  17. Flameng W, Daenen W, Jashari R et al (2015) Durability of homografts used to treat complex aortic valve endocarditis. Ann Thorac Surg 99:1234–1238CrossRefPubMedGoogle Scholar
  18. Fukushima S, Tesar PJ, Pearse B et al (2014) Long-term clinical outcomes after aortic valve replacement using cryopreserved allograft. J Thorac Cardiovasc Surg 148(1):65–72CrossRefPubMedGoogle Scholar
  19. Ganguly G, Akhunji ZA, Neethling WML et al (2004) Homograft aortic valve replacement—the experience of one unit. Heart Lung Circ 13:161–167CrossRefPubMedGoogle Scholar
  20. Gonzalez-Lavin L, Robles A, Graf D (1988) The Ross operation: the autologous pulmonary valve in the aortic position. J Card Surg 3(1):29–43CrossRefPubMedGoogle Scholar
  21. Grosse K, Meyer R, Schmitzer E et al (2008) Are heart valves from donors over 65 years of age morphologically suitable for transplantation? Cell Tissue Bank 9(1):31–36CrossRefPubMedGoogle Scholar
  22. Gulbins H, Kreuzer E, Reichart B (2003) Homografts: a review. Expert Rev Cardiovasc Ther 1(4):533–539CrossRefPubMedGoogle Scholar
  23. Henaine R, Robertie F, Vergant M et al (2012) Valve replacement in children: a challenge for a whole life. Arch Cardiovasc Dis 105:517–528CrossRefPubMedGoogle Scholar
  24. Johnston DR, Soltesz EG, Vakil N et al (2015) Long-term durability of bioprosthetic aortic valves: implications from 12,569 implants. Ann Thorac Surg 99:1239–1247CrossRefPubMedGoogle Scholar
  25. Kalfa D, Feier H, Loundou A et al (2011) Cryopreserved homograft in the Ross procedure: outcomes and prognostic factors. J Heart Valve Dis 20(5):571–581PubMedGoogle Scholar
  26. Kalfa D, Mohammadi S, Kalavrouziotis D et al (2014) Long-term outcomes of the Ross procedure in adults with severe aortic stenosis: single-center experience with 20 years of follow-up. Eur J Cardiothorac Surg 2:1–9Google Scholar
  27. Khan SS, Trento A, DeRobertis M et al (2001) Twenty-year comparison of tissue and mechanical valve replacement. J Thorac Cardiovasc Surg 122(2):257–269CrossRefPubMedGoogle Scholar
  28. Kilian E, Fries F, Kowert A et al (2010) Homograft implantation for aortic valve replacement since 15 years: results and follow-up. Heart Surg Forum 13(4):E238–E242. doi: 10.1532/HSF98.20091160 CrossRefPubMedGoogle Scholar
  29. Kitamura S, Yagihara T, Kobayashi J et al (2011) Mid- to long-term outcomes of cardiovascular tissue replacements utilizing homografts harvested and stored at Japanese Institutional Tissue Banks. Surg Today 41:500–509CrossRefPubMedGoogle Scholar
  30. Koolbergen DR, Hazekamp MG, de Heer E et al (2002) The pathology of fresh and cryopreserved homograft heart valves: an analysis of forty explanted homograft valves. J Thorac Cardiovasc Surg 124(4):689–697CrossRefPubMedGoogle Scholar
  31. Kouchokos NT, Masetti P, Nickerson NJ et al (2004) The Ross procedure: long-term clinical and echocardiographic follow-up. Ann Thorac Surg 78:773–781CrossRefGoogle Scholar
  32. Lund O, Chandrasekaran V, Grocott-Mason R et al (1999) Primary aortic valve replacement with allografts over twenty-five years: valve-related and procedure-related determinants of outcome. J Thorac Cardiovasc Surg 117:77–91CrossRefPubMedGoogle Scholar
  33. Mokhles MM, van der Woestijne PC, de Jong PL et al (2011) Clinical outcome and health-related quality of life after right-ventricular-outflow-tract reconstruction with an allograft conduit. Eur J Cardiothorac Surg 40(3):571–578PubMedGoogle Scholar
  34. Nappi F, Al-Attar N, Spadaccio C et al (2014) Aortic valve homograft: 10-year experience. Surg Technol Int 24:265–272PubMedGoogle Scholar
  35. Nishida T, Tominaga R (2013) A look at recent improvements in the durability of tissue valves. Gen Thorac Cardiovasc Surg 61:182–190CrossRefPubMedGoogle Scholar
  36. Niwaya K, Kobayashi J (2007) Medium-term results of aortic valve replacement with cryopreserved homograft valves: importance of a domestic homograft valve bank. Nihon Geka Gakkai Zasshi 108(2):85–88PubMedGoogle Scholar
  37. O’Brien MF, Harrocks S, Stafford EG et al (2001) The homograft aortic valve: a 29-year, 99.3% follow up of 1022 valve replacements. J Heart Valve Dis 10(3):334–344PubMedGoogle Scholar
  38. Poynter JA, Eghtesady P, McCrindle BW et al (2013) Association of pulmonary conduit type and size with durability in infants and young children. Ann Thorac Surg 96:1695–1702CrossRefPubMedGoogle Scholar
  39. Reece TB, Welke KF, O’Brien S et al (2014) Rethinking the Ross procedure in adults. Ann Thorac Surg 97(1):175–181CrossRefPubMedGoogle Scholar
  40. Ross DN (1987) Application of homografts in clinical surgery. J Card Surg 2(1 Suppl):175–183CrossRefPubMedGoogle Scholar
  41. Sadowski J, Kapelak B, Bartus K et al (2003) Reoperation after fresh homograft replacement: 23 years’ experience with 655 patients. Eur J Cardiothorac Surg 23(6):996–1000CrossRefPubMedGoogle Scholar
  42. Schoen FJ, Levy RJ (2005) Calcification of tissue heart valve substitutes: progress toward understanding and prevention. Ann Thorac Surg 79:1072–1080CrossRefPubMedGoogle Scholar
  43. Shapira OM, Shemin RJ (1994) Aortic valve replacement with cryoprserved allografts: mid-term results. J Card Surg 9(3):292–297CrossRefPubMedGoogle Scholar
  44. Shin HJ, Kim YH, Ko JK et al (2013) Outcomes of mechanical valves in the pulmonic position in patients with congenital heart disease over a 20-year period. Ann Thorac Surg 95(4):1367–1371CrossRefPubMedGoogle Scholar
  45. Stelzer P (2011) The Ross procedure: state of the art 2011. Semin Thorac Cardiovasc Surg 23(2):115–123CrossRefPubMedGoogle Scholar
  46. Takkenberg JJM, van Herwerden LA, Eijkemans MJC et al (2002) Evolution of allograft aortic valve replacement over 13 years: results of 275 procedures. Eur J Cardiothorac Surg 21(4):683–691CrossRefPubMedGoogle Scholar
  47. Tierney ESS, Gersony WM, Altmann K et al (2005) Pulmonary position cryopreserved homografts: durability in pediatric Ross and non-Ross patients. J Thorac Cardiovasc Surg 130:282–286CrossRefGoogle Scholar
  48. Tweddell JS, Pelech AN, Frommelt PC et al (2000) Factors affecting longevity of homograft valves used in right ventricular outflow tract reconstruction for congenital heart disease. Circulation 102(Suppl 3):130–135Google Scholar
  49. Une D, Ruel M, David TE (2014) Twenty-year durability of the aortic Hancock II bioprosthesis in young patients: Is it durable enough? Eur J Cardiothorac Surg 46(5):825–830CrossRefPubMedGoogle Scholar
  50. Vicchio M, Della Corte A, De Santo LS et al (2008) Tissue versus mechanical prostheses: quality of life in octogenarians. Ann Thorac Surg 85:1290–1295CrossRefPubMedGoogle Scholar
  51. Vuran C, Simon P, Wollenek G et al (2012) Midterm results of aortic valve replacement with cryopreserved homografts. Balkan Med J 29:170–173CrossRefPubMedPubMedCentralGoogle Scholar
  52. Waszyrowski T, Kasprzak JD, Krzeminska-Pakula M et al (1997) Early and long-term outcome of aortic valve replacement with homograft varsus mechanical prosthesis: 8-year follow-up study. Clin Cardiol 20(10):843–848CrossRefPubMedGoogle Scholar
  53. Yang CC, Wei HJ, Hsieh SR et al (2014) Excellent mid-term durability of the On-X mechanical aortic valve in the pulmonary position with a low international normalized ratio. J Heart Valve Dis 23(3):333–337PubMedGoogle Scholar
  54. Yap CH, Yii M (2004) Allograft aortic valve replacement in the adult: a review. Heart Lung Circ 13(1):41–51CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Alireza Heidary Rouchi
    • 1
  • Hassan Radmehr
    • 2
  • Seyed Amirhosein Tavakoli
    • 1
  • Tahereh Sadat Jafarzadeh Kashi
    • 3
  • Mitra Mahdavi-Mazdeh
    • 1
    Email author
  1. 1.Iranian Tissue Bank and Research CenterTehran University of Medical SciencesTehranIran
  2. 2.Department of Cardiac Surgery, Children Medical CenterTehran University of Medical SciencesTehranIran
  3. 3.Dental Materials Department, School of DentistryTehran University of Medical SciencesTehranIran

Personalised recommendations