Advertisement

Cell and Tissue Banking

, Volume 17, Issue 1, pp 39–50 | Cite as

Cryopreserved amniotic membrane as transplant allograft: viability and post-transplant outcome

  • Natasha M. J. Perepelkin
  • Kirsten Hayward
  • Tumelo Mokoena
  • Michael J. Bentley
  • Lisa U. Ross-Rodriguez
  • Leah Marquez-Curtis
  • Locksley E. McGann
  • Jelena L. Holovati
  • Janet A. W. Elliott
Original Paper

Abstract

Amniotic membrane (AM) transplantation is increasingly used in ophthalmological and dermatological surgeries to promote re-epithelialization and wound healing. Biologically active cells in the epithelial and stromal layers deliver growth factors and cytokines with anti-inflammatory, anti-bacterial, anti-immunogenic and anti-fibrotic properties. In this work, confocal microscopy was used to show that our cryopreservation protocol for AM yielded viable cells in both the stromal and epithelial layers with favorable post-transplant outcome. AM was obtained from Caesarean-section placenta, processed into allograft pieces of different sizes (3 cm × 3 cm, 5 cm × 5 cm, and 10 cm × 10 cm) and cryopreserved in 10 % dimethyl sulfoxide using non-linear controlled rate freezing. Post-thaw cell viability in the entire piece of AM and in the stromal and epithelial cell layers was assessed using a dual fluorescent nuclear dye and compared to hypothermically stored AM, while surveys from surgical end-users provided information on post-transplant patient outcomes. There was no significant statistical difference in the cell viability in the entire piece, epithelial and stromal layers regardless of the size of allograft piece (p = 0.092, 0.188 and 0.581, respectively), and in the entire piece and stromal layer of hypothermically stored versus cryopreserved AM (p = 0.054 and 0.646, respectively). Surgical end-user feedback (n = 49) indicated that 16.3 % of AM allografts were excellent and 61.2 % were satisfactory. These results support the expanded clinical use of different sizes of cryopreserved AM allografts and address the issue of orientation of the AM during transplant for the treatment of dermatological defects and ocular surface disorders.

Keywords

Amniotic membrane Stroma Epithelium Cryobiology Cryopreservation Ocular surgery Dermal surgery Tissue transplantation 

Notes

Acknowledgments

This work was partially funded by the Canadian Institutes of Health Research (CIHR MOP 86492, OGBF INO 126778, INO 131572, and MOP 133684). J. A. W. Elliott holds a Canada Research Chair in Thermodynamics. The authors would like to thank Luciana Da Silveira Cavalcante for her assistance with statistical analysis.

References

  1. Adds PJ, Hunt CJ, Dart JK (2001) Amniotic membrane grafts, “fresh” or frozen? A clinical and in vitro comparison. Br J Ophthalmol 85:905–907CrossRefPubMedPubMedCentralGoogle Scholar
  2. Allen CL, Clare G, Stewart EA et al (2013) Augmented dried versus cryopreserved amniotic membrane as an ocular surface dressing. PLoS ONE 8:e78441. doi: 10.1371/journal.pone.0078441 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Azuara-Blanco A, Pillai CT, Dua HS (1999) Amniotic membrane transplantation for ocular surface reconstruction. Br J Ophthalmol 83:399–402. doi: 10.1111/j.1442-9071.2006.01408.x CrossRefPubMedPubMedCentralGoogle Scholar
  4. Burman S, Tejwani S, Vemuganti GK et al (2004) Ophthalmic applications of preserved human amniotic membrane: a review of current indications. Cell Tissue Bank 5:161–175. doi: 10.1023/B:CATB.0000046067.25057.0a CrossRefPubMedGoogle Scholar
  5. Cooke M, Tan E, Mandrycky C et al (2014) Comparison of cryopreserved amniotic membrane and umbilical cord tissue with dehydrated amniotic membrane/chorion tissue. J Wound Care 23:465–476CrossRefPubMedGoogle Scholar
  6. Davis JS (1910) Skin transplantation with a review of 550 cases at the Johns Hopkins Hospital. Johns Hopkins Hosp Reports 15:307–396Google Scholar
  7. Díaz-Prado S, Rendal-Vázquez ME, Muiños-López E et al (2010) Potential use of the human amniotic membrane as a scaffold in human articular cartilage repair. Cell Tissue Bank 11:183–195. doi: 10.1007/s10561-009-9144-1 CrossRefPubMedGoogle Scholar
  8. Dua HS, Azuara-Blanco A (1999) Amniotic membrane transplantation. Br J Ophthalmol 83:748–752CrossRefPubMedPubMedCentralGoogle Scholar
  9. Fairbairn NG, Randolph MA, Redmond RW (2014) The clinical applications of human amnion in plastic surgery. J Plast Reconstr Aesthetic Surg 67:662–675. doi: 10.1016/j.bjps.2014.01.031 CrossRefGoogle Scholar
  10. Füst A, Pállinger E, Stündl A et al (2012) Both freshly prepared and frozen-stored amniotic membrane cells express the complement inhibitor CD59. Sci World J 2012:815615. doi: 10.1100/2012/815615 CrossRefGoogle Scholar
  11. Hennerbichler S, Reichl B, Pleiner D et al (2007) The influence of various storage conditions on cell viability in amniotic membrane. Cell Tissue Bank 8:1–8. doi: 10.1007/s10561-006-9002-3 CrossRefPubMedGoogle Scholar
  12. Hermans MHE (2011) Preservation methods of allografts and their (lack of) influence on clinical results in partial thickness burns. Burns 37:873–881. doi: 10.1016/j.burns.2011.01.007 CrossRefPubMedGoogle Scholar
  13. Hopkinson A, McIntosh RS, Shanmuganathan V et al (2006) Proteomic analysis of amniotic membrane prepared for human transplantation: characterization of proteins and clinical implications. J Proteome Res 5:2226–2235. doi: 10.1021/pr050425q CrossRefPubMedGoogle Scholar
  14. Hopkinson A, Shanmuganathan VA, Gray T et al (2008) Optimization of amniotic membrane (AM) denuding for tissue engineering. Tissue Eng Part C Methods 14:371–381. doi: 10.1089/ten.tec.2008.0315 CrossRefPubMedGoogle Scholar
  15. Kim EY, Lee K-B, Kim MK (2014) The potential of mesenchymal stem cells derived from amniotic membrane and amniotic fluid for neuronal regenerative therapy. Biochem Mol Biol Reports 47:135–140Google Scholar
  16. Kobayashi A, Sugiyama K, Li W, Tseng S (2008) In vivo laser confocal microscopy findings of cryopreserved and fresh human amniotic membrane. Ophthalmic Surg Lasers Imaging 39:312–318CrossRefPubMedGoogle Scholar
  17. Koizumi N, Inatomi T, Sotozono C et al (2000) Growth factor mRNA and protein in preserved human amniotic membrane. Curr Eye Res 20:173–177CrossRefPubMedGoogle Scholar
  18. Koizumi N, Rigby H, Fullwood N et al (2006) Comparison of intact and denuded amniotic membrane as a substrate for cell-suspension culture of human limbal epithelial cells. Graefe’s Arch Clin Exp Ophthalmol 245:123–134CrossRefGoogle Scholar
  19. Kruse FE, Joussen AM, Rohrschneider K et al (2000) Cryopreserved human amniotic membrane for ocular surface reconstruction. Graefe’s Arch Clin Exp Ophthalmol 238:68–75CrossRefGoogle Scholar
  20. Laurent R, Nallet A, Obert L et al (2014) Storage and qualification of viable intact human amniotic graft and technology transfer to a tissue bank. Cell Tissue Bank 15:267–275. doi: 10.1007/s10561-014-9437-x CrossRefPubMedGoogle Scholar
  21. Liu J, Sheha H, Fu Y et al (2010) Update on amniotic membrane transplantation. Expert Rev Ophthalmol 5:645–661. doi: 10.1586/eop.10.63.Update CrossRefPubMedPubMedCentralGoogle Scholar
  22. Lo V, Pope E (2009) Amniotic membrane use in dermatology. Int J Dermatol 48:935–940. doi: 10.1111/j.1365-4632.2009.04173.x CrossRefPubMedGoogle Scholar
  23. Malhotra C, Jain AK (2014) Human amniotic membrane transplantation: different modalities of its use in ophthalmology. World J Transplant 4:111–121. doi: 10.5500/wjt.v4.i2.111 PubMedPubMedCentralGoogle Scholar
  24. Mamede AC, Carvalho MJ, Abrantes AM et al (2012) Amniotic membrane: from structure and functions to clinical applications. Cell Tissue Res 349:447–458. doi: 10.1007/s00441-012-1424-6 CrossRefPubMedGoogle Scholar
  25. Mascotti K, McCullough J, Burger SR (2000) HPC viability measurement: trypan blue versus acridine orange and propidium iodide. Transfusion 40:693–696. doi: 10.1046/j.1537-2995.2000.40060693.x CrossRefPubMedGoogle Scholar
  26. Meller D, Pauklin M, Thomasen H et al (2011) Amniotic membrane transplantation in the human eye. Dtsch Arztebl Int 108:243–248. doi: 10.3238/arztebl.2011.0243 PubMedPubMedCentralGoogle Scholar
  27. Micera A, Jirsova K, Normando EM et al (2014) Molecular and biochemical expression of TLRs in human amniotic membrane: a comparative study of fresh and cryopreserved specimens. Graefe’s Arch Clin Exp Ophthalmol 252:267–274. doi: 10.1007/s00417-013-2540-z CrossRefGoogle Scholar
  28. Niknejad H, Peirovi H, Jorjani M et al (2008) Properties of the amniotic membrane for potential use in tissue engineering. Eur Cell Mater 15:88–99PubMedGoogle Scholar
  29. Niknejad H, Deihim T, Solati-Hashjin M, Peirovi H (2011) The effects of preservation procedures on amniotic membrane’s ability to serve as a substrate for cultivation of endothelial cells. Cryobiology 63:145–151. doi: 10.1016/j.cryobiol.2011.08.003 CrossRefPubMedGoogle Scholar
  30. Rama P, Giannini R, Bruni A et al (2001) Further evaluation of amniotic membrane banking for transplantation in ocular surface diseases. Cell Tissue Bank 2:155–163. doi: 10.1023/A:1020158206073 CrossRefPubMedGoogle Scholar
  31. Riau AK, Beuerman RW, Lim LS, Mehta JS (2010) Preservation, sterilization and de-epithelialization of human amniotic membrane for use in ocular surface reconstruction. Biomaterials 31:216–225. doi: 10.1016/j.biomaterials.2009.09.034 CrossRefPubMedGoogle Scholar
  32. Ricci E, Vanosi G, Lindenmair A et al (2013) Anti-fibrotic effects of fresh and cryopreserved human amniotic membrane in a rat liver fibrosis model. Cell Tissue Bank 14:475–488. doi: 10.1007/s10561-012-9337-x CrossRefPubMedGoogle Scholar
  33. Schulze U, Hampel U, Sel S et al (2012) Fresh and cryopreserved amniotic membrane secrete the trefoil factor family peptide 3 that is well known to promote wound healing. Histochem Cell Biol 138:243–250. doi: 10.1007/s00418-012-0943-2 CrossRefPubMedGoogle Scholar
  34. Shortt AJ, Secker GA, Lomas RJ et al (2009) The effect of amniotic membrane preparation method on its ability to serve as a substrate for the ex vivo expansion of limbal epithelial cells. Biomaterials 30:1056–1065. doi: 10.1016/j.biomaterials.2008.10.048 CrossRefPubMedGoogle Scholar
  35. Tehrani FA, Ahmadiani A, Niknejad H (2013) The effects of preservation procedures on antibacterial property of amniotic membrane. Cryobiology 67:293–298. doi: 10.1016/j.cryobiol.2013.08.010 CrossRefPubMedGoogle Scholar
  36. Thomasen H, Pauklin M, Noelle B et al (2011) The effect of long-term storage on the biological and histological properties of cryopreserved amniotic membrane. Curr Eye Res 36:247–255. doi: 10.3109/02713683.2010.542267 CrossRefPubMedGoogle Scholar
  37. Werber B, Martin E (2013) A prospective study of 20 foot and ankle wounds treated with cryopreserved amniotic membrane and fluid allograft. J Foot Ankle Surg 52:615–621. doi: 10.1053/j.jfas.2013.03.024 CrossRefPubMedGoogle Scholar
  38. Wolbank S, Hildner F, Redl H et al (2009) Impact of human amniotic membrane preparation on release of angiogenic factors. J Tissue Eng Regen Med 3:651–654. doi: 10.1002/term.207 CrossRefPubMedGoogle Scholar
  39. Zelen CM, Snyder RJ, Serena TE, Li WW (2015) The use of human amnion/chorion membrane in the clinical setting for lower extremity repair. Clin Podiatr Med Surg 32:135–146. doi: 10.1016/j.cpm.2014.09.002 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Natasha M. J. Perepelkin
    • 2
  • Kirsten Hayward
    • 2
  • Tumelo Mokoena
    • 1
  • Michael J. Bentley
    • 1
  • Lisa U. Ross-Rodriguez
    • 1
    • 2
    • 3
  • Leah Marquez-Curtis
    • 2
    • 3
  • Locksley E. McGann
    • 2
  • Jelena L. Holovati
    • 1
    • 2
  • Janet A. W. Elliott
    • 2
    • 3
  1. 1.Comprehensive Tissue CentreAlberta Health ServicesEdmontonCanada
  2. 2.Department of Laboratory Medicine and PathologyUniversity of AlbertaEdmontonCanada
  3. 3.Department of Chemical and Materials EngineeringUniversity of AlbertaEdmontonCanada

Personalised recommendations