Skip to main content

Advertisement

Log in

Osteoconduction capacity of human deciduous and permanent teeth ash in a rat calvarial bone defect model

  • Published:
Cell and Tissue Banking Aims and scope Submit manuscript

An Erratum to this article was published on 28 April 2015

Abstract

The aim of this study was to confirm the osteoconduction capacities and determine the potential of permanent teeth ash (PTA), and deciduous teeth ash (DTA) as bone substitutes. Rats (n = 71) were divided randomly into four groups: sham, micro macroporous biphasic calcium phosphate (MBCP), PTA, and DTA. A sample of the each group was transplanted into preformed 8-mm calvarial defects (one per rat). The density of new bone was calculated and the crystallinities of the PTA and DTA were analyzed by X-ray diffraction. The degree of new bone formation was high in the MBCP and DTA groups but low in the PTA groups. The DTA was highly crystalline, whereas the PTA was not. The percentages of β-tricalcium phosphate in the DTA and PTA were 10.7 and 3.7 %, respectively. DTA has a high osteoconduction capacity, suggesting that it is a useful bone substitute.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alberius P, Dahlin C, Linde A (1992) Role of osteopromotion in experimental bone grafting to the skull: a study in adult rats using a membrane technique. J Oral Maxillofac Surg 50:829–834

    Article  CAS  PubMed  Google Scholar 

  • Athanasiou VT, Papachristou DJ, Panagopoulos A, Saridis A, Scopa CD, Megas P (2010) Histological comparison of autograft, allograft-DBM, xenograft, and synthetic grafts in a trabecular bone defect: an experimental study in rabbits. Med Sci Monit 16:BR24–BR31

  • Balasundaram G, Sato M, Webster TJ (2006) Using hydroxyapatite nanoparticles and decreased crystallinity to promote osteoblast adhesion similar to functionalizing with RGD. Biomaterials 27:2798–2805

    Article  CAS  PubMed  Google Scholar 

  • Buser D, Hoffmann B, Bernard JP, Lussi A, Mettler D, Schenk RK (1998) Evaluation of filling materials in membrane–protected bone defects: a comparative histomorphometric study in the mandible of miniature pigs. Clin Oral Implants Res 9:137–150

    Article  CAS  PubMed  Google Scholar 

  • Cornell CN, Lane JM (1998) Current understanding of osteoconduction in bone regeneration. Clin Orthop Relat Res 355:S267–S273

  • de Bruijn JD, van Blitterswijk CA, Davies JE (1995) Initial bone matrix formation at the hydroxyapatite interface in vivo. J Biomed Mater Res 29:89–99

    Article  PubMed  Google Scholar 

  • Eppley BL, Pietrzak WS, Blanton MW (2005) Allograft and alloplastic bone substitutes: a review of science and technology for the craniomaxillofacial surgeon. J Craniofac Surg 16:981–989

    Article  PubMed  Google Scholar 

  • Gauthier O, Bouler JM, Aguado E, Pilet P, Daculsi G (1998) Macroporous biphasic calcium phosphate ceramics: influence of macropore diameter and macroporosity percentage on bone ingrowth. Biomaterials 19:133–139

    Article  CAS  PubMed  Google Scholar 

  • Han T, Carranza FA Jr, Kenney EB (1984) Calcium phosphate ceramics in dentistry: a review of the literature. J West Soc Periodontol Periodontal Abstr 32:88–108

    CAS  PubMed  Google Scholar 

  • Hannink G, Arts JJ (2011) Bioresorbability, porosity and mechanical strength of bone substitutes: what is optimal for bone regeneration? Injury 42(Suppl 2):S22–S25

    Article  PubMed  Google Scholar 

  • Hiatt WH, Schallhorn RG (1973) Intraoral transplants of cancellous bone and marrow in periodontal lesions. J Periodontol 44:194–208

    Article  CAS  PubMed  Google Scholar 

  • Hoh KY, Yoon CK (1984) A study on the physical properties and cytotoxicity of tooth ash and dental porcelain. J Korean Acad Prosthodont 22:52–68

    Google Scholar 

  • Hulbert SF, Young FA, Mathews RS, Klawitter JJ, Talbert CD, Stelling FH (1970) Potential of ceramic materials as permanently implantable skeletal prostheses. J Biomed Mater Res 4:433–456

    Article  CAS  PubMed  Google Scholar 

  • Jang JW, Yun JH, Lee KI, Jang JW, Jung UW, Kim CS et al (2012) Osteoinductive activity of biphasic calcium phosphate with different rhBMP-2 doses in rats. Oral Surg Oral Med Oral Pathol Oral Radiol 113:480–487

    Article  PubMed  Google Scholar 

  • Kim SG, Yeo HH, Kim YK (1999) Grafting of large defects of the jaws with a particulate dentin-plaster of Paris combination. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 88:22–25

    Article  CAS  PubMed  Google Scholar 

  • Kim YK, Kim SG, Lee JG, Lee MH, Cho JO (2001a) An experimental study of the healing process after the implantation of various bone substitutes in the rats. J Korean Assoc Oral Maxillofac Surg 27:15–24

    CAS  Google Scholar 

  • Kim SG, Kim HK, Lee SC (2001b) Combined implantation of particulate dentine, plaster of Paris, and a bone xenograft (Bio-Oss) for bone regeneration in rats. J Craniomaxillofac Surg 29:282–288

    Article  Google Scholar 

  • Kim SG, Chung CH, Kim YK, Park JC, Lim SC (2002) Use of particulate dentin-plaster of Paris combination with/without platelet-rich plasma in the treatment of bone defects around implants. Int J Oral Maxillofac Implants 17:86–94

    PubMed  Google Scholar 

  • Kim GW, Yeo IS, Kim SG, Um IU, Kim YK (2011a) Analysis of crystalline structure of autogenous tooth bone graft material: X-ray diffraction analysis. J Korean Assoc Oral Maxillofac Surg 37:225–228

    Article  Google Scholar 

  • Kim JW, Choi KH, Yun JH, Jung UW, Kim CS, Choi SH et al (2011b) Bone formation of block and particulated biphasic calcium phosphate lyophilized with Escherichia coli-derived recombinant human bone morphogenetic protein 2 in rat calvarial defects. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 112:298–306

    Article  PubMed  Google Scholar 

  • Kim YK, Kim SG, Yun PY, Yeo IS, Jin SC, Oh JS et al (2014) Autogenous teeth used for bone grafting: a comparison with traditional grafting materials. Oral Surg Oral Med Oral Pathol Oral Radiol 117:e39–e45

  • Kurz LT, Garfin SR, Booth RE Jr (1989) Harvesting autogenous iliac bone grafts: a review of complications and techniques. Spine (Phila Pa 1976) 14:1324–1331

  • Monroe EA, Votava W, Bass DB, McMullen J (1971) New calcium phosphate ceramic material for bone and tooth implants. J Dent Res 50:860–861

    Article  CAS  PubMed  Google Scholar 

  • Tadic D, Epple M (2004) A thorough physicochemical characterisation of 14 calcium phosphate-based bone substitution materials in comparison to natural bone. Biomaterials 25:987–994

    Article  CAS  PubMed  Google Scholar 

  • Tsuruga E, Takita H, Itoh H, Wakisaka Y, Kuboki Y (1997) Pore size of porous hydroxyapatite as the cell-substratum controls BMP-induced osteogenesis. J Biochem 121:317–324

    Article  CAS  PubMed  Google Scholar 

  • Wittkampf ARM (1989) Fibrin glue as cement for HA-granules. J Cranio Maxillofac Surg 17:179–181

    Article  CAS  Google Scholar 

  • Yukna RA, Harrison BG, Caudill RF, Evans GH, Mayer ET, Miller S (1985) Evaluation of durapatite ceramic as an alloplastic implant in periodontal osseous defects. II. Twelve month reentry results. J Periodontol 56:540–547

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a faculty research Grant of Yonsei University College of Dentistry for 2013 (6-2013-0011).

Conflict of interest

No competing financial interests exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Ho Lee.

Additional information

Boram Min and Je Seon Song have equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Min, B., Song, J.S., Kim, SO. et al. Osteoconduction capacity of human deciduous and permanent teeth ash in a rat calvarial bone defect model. Cell Tissue Bank 16, 361–369 (2015). https://doi.org/10.1007/s10561-014-9480-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10561-014-9480-7

Keywords

Navigation