Cell and Tissue Banking

, Volume 16, Issue 2, pp 195–207 | Cite as

Alternative protocols to induce chondrogenic differentiation: transforming growth factor-β superfamily

  • Claudia Cicione
  • Emma Muiños-López
  • Tamara Hermida-Gómez
  • Isaac Fuentes-Boquete
  • Silvia Díaz-PradoEmail author
  • Francisco J. BlancoEmail author
Original Paper


Mesenchymal stem cells (MSCs) are an accepted candidate for cell-based therapy of multiple diseases. The interest in MSCs and their possible application in cell therapy have resulted in a better understanding of the basic biology of these cells. Recently, like aggregation and transforming growth factor beta (TGFβ) delivery, hypoxia has been indicated as crucial for complete chondrogenesis. The aim of this study was to test different culture conditions for directing stem cell differentiation into the chondrogenic lineage in vitro by testing different TGFβ superfamily members into the culture media under normoxic conditions. All chondrogenic culture conditions used allowed the differentiation of bone marrow-MSCs (BM-MSCs) into chondrogenic lineage. Chondrogenic induction capacity depended on the growth factor added to the culture media. In particular, the chondrogenic culture condition that better induced chondrogenesis was the medium that included the combination of three growth factors: bone morphogenetic protein-2 (BMP-2), BMP-7 and TGFβ-3. In this culture media, differentiated cells showed the highest levels expression of two markers of chondrogenesis, SOX9 and COL2A1, compared to the control points (p < 0.05, two-tailed t test). In our experimental conditions, the combination of BMP-2, BMP-7 and TGFβ-3 was the most effective in promoting chondrogenesis of BM-MSCs. These results underline the importance of determining in each experimental design the best protocol for in vitro directing stem cell differentiation into the chondrogenic lineage.


Cell therapy Autologous chondrocyte implantation Focal lesions Hyaline articular cartilage 



Ascorbic acid




Alkaline phosphatase




Bone marrow-mesenchymal stem cells


Bone morphogenetic protein-2


Bone morphogenetic protein-7


Complementary deoxyribonucleic acid


Collagen type XA1


Collagen type IA1


Collagen type IIA1


Dulbecco’s modified Eagle’s medium


Fatty acid-binding protein 4


Fetal bovine serum




Insulin-like growth factor-1


Knockout serum


Lipoprotein lipase


Matrix metalloproteinase 13


Mesenchymal stem cells


Masson’s trichrome






Osteogenic protein 1


Penicillin and streptomycin


Polymerase chain reaction


Real-Time PCR


Relative expression levels


Recombinant human bone morphogenetic protein 2


Ribonucleic acid


Safranin O


Sex determining region Y-box 9


Toluidine blue


TATA box binding protein


Transforming growth factor beta


Transforming growth factor beta-3



This study was supported by grants: Servizo Galego de Saúde, Xunta de Galicia (PS07/84), Cátedra Bioiberica de la Universidade da Coruña and Instituto de Salud Carlos III CIBER BBN; Ministerio Ciencia e Innovacion PLE2009-0144; Fondo Investigacion Sanitaria-PI 08/2028 with participation of funds from FEDER (European Community), Tamara Hermida-Gómez is the beneficiary of a contract from Fondo de Investigación Sanitaria (2008), Spain. We would like to thank P.Filgueira and M.J.Sánchez for technical assistance.

Conflict of interest

The authors declare that no competing financial interest exists.

Supplementary material

10561_2014_9472_MOESM1_ESM.doc (34 kb)
Supplementary material 1 (DOC 34 kb)
10561_2014_9472_MOESM2_ESM.doc (29 kb)
Supplementary material 2 (DOC 29 kb)


  1. Blaney Davidson EN, Vitters EL, van Lent PL, van de Loo FA, van den Berg WB, van der Kraan PM (2007) Elevated extracellular matrix production and degradation upon bone morphogenetic protein-2 (BMP-2) stimulation point toward a role for BMP-2 in cartilage repair and remodeling. Arthritis res Ther 9:R102CrossRefPubMedGoogle Scholar
  2. Bobick BE, Chen FH, Le AM, Tuan RS (2009) Regulation of the chondrogenic phenotype in culture. Birth Defects Res C Embryo Today 87:351–371CrossRefPubMedGoogle Scholar
  3. Buckwalter JA, Mankin HJ (1998) Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation. Instr Course Lect 47:487–504PubMedGoogle Scholar
  4. Chen WH, Lai MT, Wu AT, Wu CC, Gelovani JG, Lin CT, Hung SC, Chiu WT, Deng WP (2009) In vitro stage-specific chondrogenesis of mesenchymal stem cells committed to chondrocytes. Arthritis Rheum 60:450–459CrossRefPubMedGoogle Scholar
  5. Cicione C, Diaz-Prado S, Muinos-Lopez E, Hermida-Gomez T, Blanco FJ (2010) Molecular profile and cellular characterization of human bone marrow mesenchymal stem cells: donor influence on chondrogenesis. Differentiation 80:155–165CrossRefPubMedGoogle Scholar
  6. Cicione,C., Muinos-Lopez,E., Hermida-Gomez,T., Fuentes-Boquete,I., Diaz-Prado,S., and Blanco,F.J. (2013). Effects of severe hypoxia on bone marrow mesenchymal stem cells differentiation potential. Stem Cells Int. 2013:232896. doi: 10.1155/2013/232896
  7. Conget PA, Minguell JJ (1999) Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells. J Cell Physiol 181:67–73CrossRefPubMedGoogle Scholar
  8. DeLise AM, Stringa E, Woodward WA, Mello MA, Tuan RS (2000) Embryonic limb mesenchyme micromass culture as an in vitro model for chondrogenesis and cartilage maturation. Methods Mol Biol 137:359–375PubMedGoogle Scholar
  9. Derfoul A, Perkins GL, Hall DJ, Tuan RS (2006) Glucocorticoids promote chondrogenic differentiation of adult human mesenchymal stem cells by enhancing expression of cartilage extracellular matrix genes. Stem Cells 24:1487–1495CrossRefPubMedGoogle Scholar
  10. Díaz Prado S, Fuentes Boquete I, Blanco FJ Cell therapy and tisular engineering to regenerate articular cartilage. In: Malgorzata Komorowska A, Olsztynska-Janus S (eds) Biomedical engineering, trends, researches and technologies. Intech Editorial 2011, p 193-216.
  11. Diaz-Prado S, Muinos-Lopez E, Hermida-Gomez T, Cicione C, Rendal-Vazquez ME, Fuentes-Boquete I, de Toro FJ, Blanco FJ (2011) Human amniotic membrane as an alternative source of stem cells for regenerative medicine. Differentiation 81:162–171CrossRefPubMedGoogle Scholar
  12. Dominici M, Le BK, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317CrossRefPubMedGoogle Scholar
  13. Goldring MB, Tsuchimochi K, Ijiri K (2006) The control of chondrogenesis. J Cell Biochem 97:33–44CrossRefPubMedGoogle Scholar
  14. Haaijman A, Burger EH, Goei SW, Nelles L, Dijke PT, Huylebroeck D, Bronckers ALJJ (2000) Correlation between ALK-6 (BMPR-IB) distribution and responsiveness to osteogenic protein-1 (BMP-7) in embryonic mouse bone rudiments. Growth Factors 17(3):177–192CrossRefPubMedGoogle Scholar
  15. Heinegard D (2009) Proteoglycans and more—from molecules to biology. Int J Exp Pathol 90:575–586CrossRefPubMedCentralPubMedGoogle Scholar
  16. Heng BC, Cao T, Lee EH (2004) Directing stem cell differentiation into the chondrogenic lineage in vitro. Stem Cells 22:1152–1167CrossRefPubMedGoogle Scholar
  17. Hermida-Gomez T, Fuentes-Boquete I, Gimeno-Longas MJ, Muinos-Lopez E, Diaz-Prado S, de Toro FJ, Blanco FJ (2011) Bone marrow cells immunomagnetically selected for CD271+ antigen promote in vitro the repair of articular cartilage defects. Tissue Eng Part A 17:1169–1179CrossRefPubMedGoogle Scholar
  18. Hombach-Klonisch S, Panigrahi S, Rashedi I, Seifert A, Alberti E, Pocar P, Kurpisz M, Schulze-Osthoff K, Mackiewicz A, Los M (2008) Adult stem cells and their trans-differentiation potential–perspectives and therapeutic applications. J Mol Med (Berl) 86:1301–1314CrossRefGoogle Scholar
  19. Hwang NS, Varghese S, Lee HJ, Zhang Z, Ye Z, Bae J, Cheng L, Elisseeff J (2008) In vivo commitment and functional tissue regeneration using human embryonic stem cell-derived mesenchymal cells. Proc Natl Acad Sci U.S.A 105:20641–20646CrossRefPubMedCentralPubMedGoogle Scholar
  20. Johnstone B, Hering TM, Caplan AI, Goldberg VM, Yoo JU (1998) In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp Cell Res 238:265–272CrossRefPubMedGoogle Scholar
  21. Jung DI, Ha J, Kang BT, Kim JW, Quan FS, Lee JH, Woo EJ, Park HM (2009) A comparison of autologous and allogenic bone marrow-derived mesenchymal stem cell transplantation in canine spinal cord injury. J Neurol Sci 285:67–77CrossRefPubMedGoogle Scholar
  22. Kameda T, Koike C, Saitoh K, Kuroiwa A, Iba H (2000) Analysis of cartilage maturation using micromass cultures of primary chondrocytes. Dev Growth Differ 42:229–236CrossRefPubMedGoogle Scholar
  23. Kaps C, Bramlage C, Smolian H, Haisch A, Ungethum U, Burmester GR, Sittinger M, Gross G, Haupl T (2002) Bone morphogenetic proteins promote cartilage differentiation and protect engineered artificial cartilage from fibroblast invasion and destruction. Arthritis Rheum 46:149–162CrossRefPubMedGoogle Scholar
  24. Keller B, Yang T, Chen Y, Munivez E, Bertin T, Zabel B, Lee B (2011) Interaction of TGFbeta and BMP signaling pathways during chondrogenesis. PLoS ONE 6:e16421CrossRefPubMedCentralPubMedGoogle Scholar
  25. Kim HJ, Im GI (2009) Combination of transforming growth factor-beta2 and bone morphogenetic protein 7 enhances chondrogenesis from adipose tissue-derived mesenchymal stem cells. Tissue Eng Part A 15:1543–1551CrossRefPubMedGoogle Scholar
  26. Kim MS, Hwang NS, Lee J, Kim TK, Leong K, Shamblott MJ, Gearhart J, Elisseeff J (2005) Musculoskeletal differentiation of cells derived from human embryonic germ cells. Stem Cells 23:113–123CrossRefPubMedGoogle Scholar
  27. Kock L, van Donkelaar CC, Ito K (2012) Tissue engineering of functional articular cartilage: the current status. Cell Tissue Res 347:613–627CrossRefPubMedCentralPubMedGoogle Scholar
  28. Kurth T, Hedbom E, Shintani N, Sugimoto M, Chen FH, Haspl M, Martinovic S, Hunziker EB (2007) Chondrogenic potential of human synovial mesenchymal stem cells in alginate. Osteoarthritis Cartilage 15:1178–1189CrossRefPubMedGoogle Scholar
  29. Lefebvre V, Huang W, Harley VR, Goodfellow PN, de Crombrugghe B (1997) SOX9 is a potent activator of the chondrocyte-specific enhancer of the pro alpha1(II) collagen gene. Mol Cell Biol 17:2336–2346PubMedCentralPubMedGoogle Scholar
  30. Lian Q, Lye E, Suan YK, Khia Way TE, Salto-Tellez M, Liu TM, Palanisamy N, El Oakley RM, Lee EH, Lim B, Lim SK (2007) Derivation of clinically compliant MSCs from CD105+. Stem Cells 25:425–436CrossRefPubMedGoogle Scholar
  31. Nawata M, Wakitani S, Nakaya H, Tanigami A, Seki T, Nakamura Y, Saito N, Sano K, Hidaka E, Takaoka K (2005) Use of bone morphogenetic protein 2 and diffusion chambers to engineer cartilage tissue for the repair of defects in articular cartilage. Arthritis Rheum 52:155–163CrossRefPubMedGoogle Scholar
  32. Pelttari K, Winter A, Steck E, Goetzke K, Hennig T, Ochs BG, Aigner T, Richter W (2006) Premature induction of hypertrophy during in vitro chondrogenesis of human mesenchymal stem cells correlates with calcification and vascular invasion after ectopic transplantation in SCID mice. Arthritis Rheum 54:3254–3266CrossRefPubMedGoogle Scholar
  33. Pittenger MF (2008) Mesenchymal stem cells from adult bone marrow. Methods Mol Biol 449:27–44PubMedGoogle Scholar
  34. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147CrossRefPubMedGoogle Scholar
  35. Pizette S, Niswander L (2000) BMPs are required at two steps of limb chondrogenesis: formation of prechondrogenic condensations and their differentiation into chondrocytes. Dev Biol 219:237–249CrossRefPubMedGoogle Scholar
  36. Richler C, Yaffe D (1970) The in vitro cultivation and differentiation capacities of myogenic cell lines. Dev Biol 23:1–22CrossRefPubMedGoogle Scholar
  37. Ryden M, Dicker A, Gotherstrom C, Astrom G, Tammik C, Arner P, Le BK (2003) Functional characterization of human mesenchymal stem cell-derived adipocytes. Biochem Biophys Res Commun 311:391–397CrossRefPubMedGoogle Scholar
  38. Sekiya I, Vuoristo JT, Larson BL, Prockop DJ (2002) In vitro cartilage formation by human adult stem cells from bone marrow stroma defines the sequence of cellular and molecular events during chondrogenesis. Proc Natl Acad Sci U.S.A 99:4397–4402CrossRefPubMedCentralPubMedGoogle Scholar
  39. Spagnoli A (2008) Mesenchymal stem cells and fracture healing. Orthopedics 31:855–856CrossRefPubMedGoogle Scholar
  40. Toh WS, Yang Z, Liu H, Heng BC, Lee EH, Cao T (2007) Effects of culture conditions and bone morphogenetic protein 2 on extent of chondrogenesis from human embryonic stem cells. Stem Cells 25:950–960CrossRefPubMedGoogle Scholar
  41. Tuli R, Tuli S, Nandi S, Huang X, Manner PA, Hozack WJ, Danielson KG, Hall DJ, Tuan RS (2003) Transforming growth factor-beta-mediated chondrogenesis of human mesenchymal progenitor cells involves N-cadherin and mitogen-activated protein kinase and Wnt signaling cross-talk. J Biol Chem 278:41227–41236CrossRefPubMedGoogle Scholar
  42. Xiang Y, Zheng Q, Jia BB, Huang GP, Xu YL, Wang JF, Pan ZJ (2007) Ex vivo expansion and pluripotential differentiation of cryopreserved human bone marrow mesenchymal stem cells. J Zhejiang Univ Sci B 8:136–146CrossRefPubMedCentralPubMedGoogle Scholar
  43. Yoon BS, Lyons KM (2004) Multiple functions of BMPs in chondrogenesis. J Cell Biochem 93:93–103CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Claudia Cicione
    • 1
    • 2
    • 3
  • Emma Muiños-López
    • 1
    • 2
    • 3
  • Tamara Hermida-Gómez
    • 1
    • 2
    • 3
  • Isaac Fuentes-Boquete
    • 2
    • 4
  • Silvia Díaz-Prado
    • 2
    • 4
    • 6
    Email author
  • Francisco J. Blanco
    • 1
    • 2
    • 3
    • 5
    • 6
    Email author
  1. 1.División de ReumatologíaINIBIC-Hospital Universitario A CoruñaA CoruñaSpain
  2. 2.Servicio de Reumatología, Grupo de Bioingeniería Tisular y Terapia Celular (CBTTC-CHUAC), CIBER-BBN/ISCIII, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), SERGASUniversidade da Coruña (UDC)A CoruñaSpain
  3. 3.Catedra BioibericaUniversidad de A Coruña, Hospital Universitario A CoruñaA CoruñaSpain
  4. 4.Grupo de Terapia Celular y Medicina Regenerativa, Departamento de Medicina, Facultad de Ciencias de la Salud, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complejo Hospitalario Universitario de A Coruña (CHUAC), SERGASUniversidade da CoruñaA CoruñaSpain
  5. 5.Grupo de Reumatología, Departamento de Medicina, Facultad de Medicina, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complejo Hospitalario Universitario de A Coruña (CHUAC), SERGASUniversidad de Santiago de CompostelaSantiago de Compostela, A CoruñaSpain
  6. 6.Osteoarticular and Aging Research LaboratoryHospital Universitario A CoruñaA CoruñaSpain

Personalised recommendations