Skip to main content
Log in

Effect of gamma radiation and accelerated electron beam on stable paramagnetic centers induction in bone mineral: influence of dose, irradiation temperature and bone defatting

  • Original Paper
  • Published:
Cell and Tissue Banking Aims and scope Submit manuscript

Abstract

Ionizing radiation has been found to induce stable defects in the crystalline lattice of bone mineral hydroxyapatite, defined as CO2 radical ions possessing spins. The purpose of our study was to evaluate CO2 radical ions induced in non-defatted or defatted human compact bone by gamma radiation (G) and accelerated electron beam (EB), applied with two doses at different temperatures. Moreover, the potential effect of free radical ion formation on mechanical parameters of compact bone, tested under compression in the previous studies, was evaluated. Bone rings from femoral shafts of six male donors (age 51 ± 3 years) were collected and assigned to sixteen experimental groups according to different processing methods (non-defatted or defatted), G and EB irradiation dose (25 or 35 kGy), and irradiation temperature [ambient temperature (AT) or dry ice (DI)]. Untreated group served as control. Following grinding under LN2 and lyophilization, CO2 radical ions in bone powder were measured by electron paramagnetic resonance spectrometry. We have found that irradiation of bone with G and EB induces formation of enormous amounts of CO2 radical ions, absent from native tissue. Free radical ion formation was dose-dependent when irradiation was performed at AT, and significantly lower in EB as compared to G-irradiated groups. In contrast, no marked effect of dose was observed when deep-frozen (DI) bone samples were irradiated with G or EB, and free radical ion numbers seemed to be slightly higher in EB-irradiated groups. Irradiation at AT induced much higher quantities of CO2 radical ions then on DI. That effect was more pronounced in G-irradiated bone specimens, probably due to longer exposure time. Similarly, bone defatting protective effect on free radical ion formation was found only in groups irradiated for several hours with gamma radiation at ambient temperature. Ambient irradiation temperature together with exposure time seem to be key parameters promoting CO2 radical ion formation in bone mineral and may mask the opposite effect of defatting and the possible effect of irradiation type. Significant weak negative correlations between CO2 radical ion number and some mechanical properties of compact bone rings (Young’s modulus and ultimate stress) were found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

G:

Gamma

EB:

Electron beam

NDF:

Non-defatted

DF:

Defatted

AT:

Ambient temperature

DI:

Dry ice

EPR:

Electron paramagnetic resonance

HA:

Hydroxyapatite

References

  • Bailey AJ (1968) Effect of ionizing radiation on connective tissue components. In: Hall DA (ed) International review of connective tissue research, vol 4. Academic Press, New York, pp 233–281

    Google Scholar 

  • Bercu V, Negut CD, Duliu OG (2012) Detection of irradiated frog (Limnonectes macrodon) leg bones by multifrequency EPR spectroscopy. Food Chem 135:2313–2319

    Article  CAS  PubMed  Google Scholar 

  • Burstein AH, Zika JC, Heiple KG, Klein L (1975) Contribution of collagen and mineral to the elastic-plastic properties of bone. J Bone Joint Surg Am 57:956–961

    CAS  PubMed  Google Scholar 

  • Callens F, Vanhaelewyn G, Matthys P, Boesman E (1998) EPR of carbonate derived radicals: applications in dosimetry, dating and detection of irradiated food. Appl Magn Reson 14:235–254

    Article  CAS  Google Scholar 

  • Caracelli I, Terrile MC, Mascarenhas S (1986) Electron spin resonance dosimetric properties of bone. Health Phys 50:259–263

    Article  CAS  PubMed  Google Scholar 

  • Craven E, Hasanain F, Winters M (2012) Minimizing material damage using low temperature irradiation. Radiat Phys Chem 81:1254–1258

    Article  CAS  Google Scholar 

  • Desrosiers MF (1996) Current status of the EPR method to detect irradiated food. Appl Radiat Isot 47:1621–1628

    Article  CAS  PubMed  Google Scholar 

  • Desrosiers MF, Le FG, Mc Laughlin WL (1994) Interlaboratory trials of the EPR method for the detection of irradiated meats containing bone. Int J Food Sci Tech 29:153–159

    Article  Google Scholar 

  • Doi Y, Moriwaki Y, Aoba T, Takahashi J, Joshin K (1982) ESR and IR studies of carbonate-containing hydroxyapatites. Calcif Tissue Int 34:178–181

    Article  CAS  PubMed  Google Scholar 

  • Einhorn TA (1992) Bone strength: the bottom line. Calcif Tissue Int 51:333–339

    Article  CAS  PubMed  Google Scholar 

  • Fattibene P, Callens F (2010) EPR dosimetry with tooth enamel: a review. Appl Radiat Isot 68:2033–2116

    Article  CAS  PubMed  Google Scholar 

  • Goldman M (1997) Integrated retrospective radiation dose assessment. Stem Cells 15(suppl 2):157–161

    PubMed  Google Scholar 

  • Goodman BA, McPhail DB, Duthie DML (1989) Electron spin resonance spectroscopy of some irradiated foodstuffs. J Sci Food Agr 47:101–111

    Article  CAS  Google Scholar 

  • Gordy W, Aard WB, Shields H (1955) Microwave spectroscopy of biological substances. Paramagnetic resonance in x-irradiated amino acids and proteins. Proc Natl Acad Sci USA 41:983–996

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hammad AA (2008) Microbial aspects of radiation sterilization. In: Trends in radiation sterilization of health care products. International Atomic Energy Agency, Vienna, pp 119–128

  • Ivannikov Al, Gaillard-Lecanu E, Trompier F, Stepanenko VF, Skvortsov VG, Borysheva NB, Tikunov DD, Petin DV (2004) Dose reconstruction by EPR spectroscopy of tooth enamel: application to the population of Zaborie village exposed to high radioactive contamination after the Chernobyl accident. Health Phys 86:121–134

    Article  CAS  PubMed  Google Scholar 

  • Jansen JThM, Schultz FW, Zoetelief J (2005) Radiation sources: types and suitability for dose delivery to tissues for sterilization. In: Kennedy JF, Phillips GO, Williams PA (eds) Sterilisation of tissues using ionizing radiations. Woodhead Publishing Ltd., Cambridge, pp 79–103

    Chapter  Google Scholar 

  • Kaminski A, Jastrzebska A, Grazka E, Marowska J, Gut G, Wojciechowski A, Uhrynowska-Tyszkiewicz I (2012a) Effect of gamma irradiation on mechanical properties of human cortical bone: influence of different processing methods. Cell Tissue Bank 13:363–374

    Article  CAS  PubMed  Google Scholar 

  • Kaminski A, Grazka E, Jastrzebska A, Marowska J, Gut G, Wojciechowski A, Uhrynowska-Tyszkiewicz I (2012b) Effect of accelerated electron beam on mechanical properties of human cortical bone: influence of different processing methods. Cell Tissue Bank 13:375–386

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kempner ES (2001) Effects of high-energy electrons and gamma rays directly on protein molecules. J Pharm Sci 90:1637–1646

    Article  CAS  PubMed  Google Scholar 

  • Kempner ES (2011) Direct effect of ionizing radiation on macromolecules. J Polym Sci B Polym Phys 49:827–831

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kleinerman RA, Romanyukha D, Schauer DA, Tucker JD (2006) Retrospective assessment of radiation exposure using biological dosimetry: chromosome painting, electron paramagnetic resonance and the glycophorin a mutation assay. Radiat Res 166:287–302

    Article  CAS  PubMed  Google Scholar 

  • Moreau MF, Gallois Y, Basle M-F, Chappard D (2000) Gamma irradiation of human bone allografts alters medullary lipids and releases toxic compounds for osteoblast-like cells. Biomaterials 21:369–376

    Article  CAS  PubMed  Google Scholar 

  • Ostrowski K, Dziedzic-Goclawska A (1976) Electron spin resonance spectrometry in investigations on mineralized tissues. In: Bourne GH (ed) Biochemistry and physiology of bone, vol IV, 2nd edn. Academic Press, New York, pp 303–327

    Google Scholar 

  • Ostrowski K, Dziedzic-Goclawska A (1989) Uses of radiation-induced paramagnetic centers in bone. Physiology 4:112–116

    CAS  Google Scholar 

  • Ostrowski K, Dziedzic-Goclawska A, Michalik J, Stachowicz W (1970) Quantitative evaluation of irradiated bone grafts resorption rate by electron spin resonance technique. Experientia 15:822

    Article  Google Scholar 

  • Ostrowski K, Dziedzic-Goclawska A, Stachowicz W, Michalik J (1972) Sensitivity of the electron spin resonance technique as applied in histochemical research on normal and pathological calcified tissues. Histochemie 32:343–351

    Article  CAS  PubMed  Google Scholar 

  • Ostrowski K, Dziedzic-Goclawska A, Stachowicz W (1980) Stable radiation-induced paramagnetic entities in tissue mineral and their use in calcified tissue research. In: Pryar W (ed) Free radicals in biology, vol 4. Academic Press, New York, pp 321–344

    Chapter  Google Scholar 

  • Ostrowski K, Dziedzic-Goclawska A, Stachowicz W, Michalik J (1991) Radiation-induced paramagnetic centers in research on bone physiopathology. Clin Orthop Relat Res 272:21–29

    PubMed  Google Scholar 

  • Qi SC, Yuan SH, Wu JL, Fang XW (1998) Pork fat peroxidation by gamma-irradiation. Radiat Phys Chem 52:119–124

    Article  CAS  Google Scholar 

  • Silindir M, Özer AY (2009) Sterilization methods and the comparison of E-beam sterilization with gamma radiation sterilization. FABAD J Pharm Sci 34:43–53

    Google Scholar 

  • Sommers CH, Niemira BA (2007) Effect of temperature on radiation resistance of Yersinia pestis suspended in raw ground pork. J Food Safety 27:317–325

    Article  Google Scholar 

  • Sommers CH, Niemira BA, Tunick M, Boyd G (2002) Effect of temperature on the radiation resistance of virulent Yersinia enterocolitica. Meat Sci 61:323–328

    Article  PubMed  Google Scholar 

  • Stachowicz W, Sadlo J, Strzelczak G, Michalik J, Bondiera P, Mazzarello V, Montanella A, Wojtowicz A, Kaminski A, Ostrowski K (1999) Dating of paleoantropological nuragic skeletal tissue using electron paramagnetic resonance (EPR) spectroscopy. Ital J Anat Embryol 104:19–31

    CAS  PubMed  Google Scholar 

  • Straume T, Anspaugh LR, Haskell EH, Lucas JN, Marchetti AA, Likhtarev IA, Chumak VV, Romanyukha AA, Khrouch VT, Gavrilin YuI, Minenko VF (1997) Emerging technological bases for retrospective dosimetry. Stem Cells 15(suppl 2):183–193

    PubMed  Google Scholar 

  • Swartz HM, Burke G, Coey M, Demidenko E, Dong R, Grinberg O, Hilton J, Iwasaki A, Lesniewski P, Kmiec M, Lo K-M, Nicolade RJ, Ruuge A, Sakata Y, Sucheta A, Walczak T, Williams BB, Mitchell C, Romanyukha A, Schauer DA (2007) In vivo EPR for dosimetry. Radiat Meas 42:1075–1084

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thayer DW, Boyd G (2001) Effect of radiation temperature on inactivation of Escherichia coli O157:H7 and Staphylococcus aureus. J Food Prot 64:1624–1626

    CAS  PubMed  Google Scholar 

  • Trompier F, Sadlo J, Michalik J, Stachowicz W, Mazal A, Clairand I, Rostkowska J, Bulski W, Kulakowski A, Sluszniak J, Gozdz S, Wojcik A (2007) EPR dosimetry for actual and suspected overexposures during radiotherapy treatments in Poland. Radiat Meas 42:1025–1028

    Article  CAS  Google Scholar 

  • Trompier F, Bassinet C, Wieser A, De Angelis C, Viscomi D, Fattibene P (2009) Radiation-induced signals analysed by EPR spectrometry applied to fortuitous dosimetry. Ann Ist Super Sanita 45:287–296

    CAS  PubMed  Google Scholar 

  • Trompier F, Bassinet C, Della Monaca S, Romanyukha A, Reyes R, Clairand I (2011) Overview of physical and biophysical techniques for accident dosimetry. Radiat Prot Dosim 144:571–574

    Article  CAS  Google Scholar 

  • Turner CH, Burr DB (1993) Basic biomechanical measurements of bone: a tutorial. Bone 14:595–608

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Gu Y, Qian SY (2012) An advanced electron spin resonance (ESR) spin-trapping and LC/(ESR)/MS technique for the study of lipid peroxidation. Int J Mol Sci 13:14648–14666

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ziaie F, Stachowicz W, Strzelczak G, Al-Osaimi S (1999) Using bone powder for dosimetric system. EPR response under the action of γ irradiation. Nukleonika 44:603–608

    CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by: IAEA Research Contract No: 16114/R1, Project CRP E3.10.06, Polish Ministry of Science and Higher Education Grants: Nr 2019/IAEA/2011/0 and Medical University of Warsaw Statute Grant 1M17/N/11.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artur Kaminski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jastrzebska, A., Kaminski, A., Grazka, E. et al. Effect of gamma radiation and accelerated electron beam on stable paramagnetic centers induction in bone mineral: influence of dose, irradiation temperature and bone defatting. Cell Tissue Bank 15, 413–428 (2014). https://doi.org/10.1007/s10561-013-9406-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10561-013-9406-9

Keywords

Navigation