Skip to main content

Advertisement

Log in

The in vitro elution of BMP-7 from demineralized bone matrix

  • Published:
Cell and Tissue Banking Aims and scope Submit manuscript

Abstract

Demineralized bone matrix (DBM) grafts induce new bone formation by locally releasing matrix-associated growth factors, such as bone morphogenetic proteins (BMPs), to the surrounding tissue after implantation. However, the release kinetics of BMPs from DBM lack characterization. Such information can potentially help to improve processing techniques to maximize graft osteoinductive potential, as well as increase understanding of the osteoinductive process itself. We produced DBM with three particle size ranges from bovine cortical bone, i.e., <106, 106–300, and 300–710 μm and extracted 1.5 g of each size range in 40 ml of Sorensen’s buffer at room temperature for up to 168 h. The BMP-7 concentration of the DBM and the buffer were measured at each time point using enzyme-linked immunosorbant assay. Based on measurement of the concentration of BMP-7 in the buffer, the 0–8 h elution rate was high, i.e., 3.3, 2.9, and 2.2 ng BMP-7/g DBM h, and for the 8–168 h interval was much lower, at 0.039, 0.15, and 0.11 ng BMP-7/g DBM h for the three size ranges, respectively. By 168 h, there was no indication that elution was nearing completion. Measurement of the residual BMP-7 remaining in the DBM as a function of time yielded unexpected results, i.e., after the BMP-7 content of the DBM declined for the first 4–6 h, it paradoxically increased for the remaining interval. We propose a two-compartment model to help explain these results in terms of the possible distribution of BMP-7 in bone matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aichelmann-Reidy ME, Heath CD, Reynolds MA (2004) Clinical evaluation of calcium sulfate in combination with demineralized freeze-dried bone allograft for the treatment of human intraosseous defects. J Periodontol 75:340–347. doi:10/1902/jop.2004.75.3.340

    Article  PubMed  Google Scholar 

  • Bae HW, Zhao L, Kanim LE, Wong P, Delamarter RB, Dawson EG (2006) Intervariability and intravariability of bone morphogenetic proteins in commercially available demineralized bone matrix products. Spine 31:1299–1306. doi:10.1097/01.brs.0000218581.92992.b7

    Article  PubMed  Google Scholar 

  • Bae H, Zhao L, Zhu D, Kanim LE, Wang JC, Delamarter RB (2010) Variability across ten production lots of a single deminmeralized bone matrix product. J Bone Jt Surg Am 92:427–435. doi:10.2106/JBJS.H.01400

    Article  Google Scholar 

  • Bauer TW, Muschler GF (2000) Bone graft materials: an overview of basic science. Clin Orthop Relat Res 371:10–27

    Article  PubMed  Google Scholar 

  • Cammisa FP Jr, Lowery G, Garfin SR, Geisler FH, Klara PM, McGuire RA, Sassard WR, Stubbs H, Block JE (2004) Two-year fusion rate equivalency between Grafton DBM gel and autograft in posterolateral spine fusion: a prospective controlled trial employing a side-by-side comparison in the same patient. Spine 29:660–666

    Article  PubMed  Google Scholar 

  • Chao MT, Jiang S, Smith D, DeCesare GE, Cooper GM, Pollack IF, Girotto J, Losee JE (2009) Demineralized bone matrix and resorbable mesh bilaminate cranioplasty: a novel method for reconstruction of large-scale defects in the pediatric calvaria. Plast Reconstr Surg 123:976–982. doi:10.1097/PRS.0b013e31819ba46f

    Article  PubMed  CAS  Google Scholar 

  • Gardner MJ, Toro-Arbelaez JB, Harrison M, Hierholzer C, Lorich DG, Helfet DL (2008) Open reduction and internal fixation of distal femoral nonunions: long-term functional outcomes following a treatment protocol. J Trauma 64:434–438. doi:10.1097/01.ta.0000245974.46709.2e

    Article  PubMed  Google Scholar 

  • Han B, Yang Z, Nimni M (2005) Effects of moisture and temperature on the osteoinductivity of demineralized bone matrix. J Orthop Res 23:855–861. doi:10.1016/j.orthres.2004.11.007

    Article  PubMed  Google Scholar 

  • Han B, Yang Z, Nimni M (2008) Effect of gamma irradiation on osteoinduction associated with demineralized bone matrix. J Orthop Res 26:75–82. doi:10.1002/jor.20478

    Article  PubMed  CAS  Google Scholar 

  • Hierholzer C, Sama D, Toro JB, Peterson M, Helfet DL (2006) Plate fixation of ununited humeral shaft fractures: effect of type of bone graft on healing. J Bone Jt Surg Am 88:1442–1447. doi:10.2106/JBJS.E.00332

    Article  Google Scholar 

  • Honsawek S, Dhitiseith D (2005) Content of bone morphogenetic protein-4 in human demineralized bone: relationship to donor age and ability to induce new bone formation. J Med Assoc Thail 88(Suppl 4):S260–S265

    Google Scholar 

  • Honsawek S, Powers RM, Wolfinbarger L (2005) Extractable bone morphogenetic protein and correlation with induced new bone formation in an in vivo assay in the athymic mouse model. Cell Tiss Bank 6:13–23. doi:10.1007/s10561-005-1445-4

    Article  CAS  Google Scholar 

  • Hunt KJ, Anderson RB (2011) Treatment of Jones fracture nonunions and refractures in the elite athlete: outcomes of intramedullary screw fixation with bone grafting. Am J Sports Med 39:1948–1954. doi:10.1177/0363546511408868

    Article  PubMed  Google Scholar 

  • Irinakis T (2011) Efficacy of injectable demineralized bone matrix as graft material during sinus elevation surgery with simultaneous implant placement in the posterior maxilla: clinical evaluation of 49 sinuses. J Oral Maxillofac Surg 69:134–141. doi:10.1016/j.joms.2010.07.028

    Article  PubMed  Google Scholar 

  • Kado KE, Gambetta LA, Perlman MD (1996) Uses of Grafton for reconstructive foot and ankle surgery. J Foot Ankle Surg 35:59–66. doi:10.1016/S1067-2516(96)80014-7

    Article  PubMed  CAS  Google Scholar 

  • Katz JM, Nataraj C, Jaw R, Deigl E, Bursac P (2009) Demineralized bone matrix as an osteoinductive biomaterial and in vitro predictors of its biological potential. J Biomed Mater Res B Appl Biomater 89:127–134. doi:10.1002/jbm.b.31195

    PubMed  Google Scholar 

  • Kim YK, Kim SG, Lim SC, Lee HJ, Yun PY (2010) A clinical study on bone formation using a demineralized bone matrix and resorbable membrane. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 109:e6–e11. doi:10.1016/j.tripleo.2010.01.012

    PubMed  Google Scholar 

  • Ladd AL, Pliam NB (1997) Use of bone-graft substitutes in distal radius fractures. J Am Acad Orthop Surg 7:279–290

    Google Scholar 

  • Landesman R, Reddi AH (1989) In vivo analysis of the half-life of the osteoinductive potential of demineralized bone matrix using diffusion chambers. Calcif Tiss Int 45:348–353

    Article  CAS  Google Scholar 

  • Lye KW, Deatherage JR, Waite PD (2008) The use of demineralized bone matrix for grafting during Le Fort I and chin osteotomies: techniques and complications. J Oral Maxillofac Surg 66:1580–1585. doi:10.1016/j.joms.2007.12.003

    Article  PubMed  Google Scholar 

  • Pacaccio DJ, Stern SF (2005) Demineralized bone matrix: basic science and clinical applications. Clin Podiatr Med Surg 22:599–606. doi:10.1016/j.cpm.2005.07.001

    Article  PubMed  Google Scholar 

  • Pietrzak WS (2006) The hydration characteristics of demineralized and nondemineralized allograft bone: scientific perspectives on graft function. J Craniofac Surg 17:120–130. doi:10.1097/01.scs.0000200413.68324.61

    Article  PubMed  Google Scholar 

  • Pietrzak WS, Woodell-May J (2005) The composition of human cortical allograft bone derived from FDA/AATB-screened donors. J Craniofac Surg 16:579–585. doi:10.1097/01.SCS.0000159086.44801.C7

    Article  PubMed  Google Scholar 

  • Pietrzak WS, Perns SV, Keyes J, Woodell-May J, McDonald NM (2005) Demineralized bone matrix graft: a scientific and clinical case study assessment. J Foot Ankle Surg 44:345–353. doi:10.1053/j.jfas.2005.07.006

    Article  PubMed  Google Scholar 

  • Pietrzak WS, Woodell-May J, McDonald N (2006) Assay of bone morphogenetic protein-2, -4, and -7 in human demineralized bone matrix. J Craniofac Surg 17:84–90. doi:10.1097/01.scs.0000179745.91165.73

    Article  PubMed  Google Scholar 

  • Pietrzak WS, Ali SN, Chitturi D, Jacob M, Woodell-May JE (2011a) BMP depletion occurs during prolonged acid demineralization of bone: characterization and implications for graft preparation. Cell Tiss Bank 12:81–88. doi:10.1007/s10561-009-9168-6

    Article  CAS  Google Scholar 

  • Pietrzak WS, Dow M, Gomez J, Soulvie M; Tsiagalis G (2011b) The in vitro elution profile of BMP-7 from demineralized bone matrix. In: Presented at the 2011 Annual Meeting of the Orthopaedic Research Society, Long Beach, poster no. 1455

  • Reddi AH (2001) Bone morphogenetic proteins: from basic science to clinical applications. J Bone Jt Surg 83A(Suppl 1):S1–S6. doi:10.2106/JBJS.K.00508

    Google Scholar 

  • Rougraff BT, Kling TJ (2002) Treatment of active unicameral bone cysts with percutaneous injection of demineralized bone matrix and autogenous bone marrow. J Bone Jt Surg Am 84-A:921–929

    Google Scholar 

  • Sampath TK, Reddi AH (1981) Dissociative extraction and reconstitution of extracellular matrix components involved in local bone differentiation. Proc Natl Acad Sci 78:7599–7603

    Article  PubMed  CAS  Google Scholar 

  • Sampath TK, Reddi AH (1984) Distribution of bone inductive proteins in mineralized and demineralized extracellular matrix. Biochem Biophys Res Commun 119:949–954. doi:10.1016/0006-291X(84)90865-9

    Article  PubMed  CAS  Google Scholar 

  • Schizas C, Triantafyllopoulos D, Kosmopoulos V, Tzinieris N, Stafylas K (2008) Posterolateral lumbar spine fusion using a novel demineralized bone matrix: a controlled case pilot study. Arch Orthop Trauma Surg 128:621–625. doi:10.1007/s00402-007-0495-4

    Article  PubMed  Google Scholar 

  • Traianedes K, Russell JL, Edwards JT, Stubbs HA, Shanahan IR, Knaack D (2004) Donor age and gender effects on osteoinductivity of demineralized bone matrix. J Biomed Mater Res B Appl Biomater 70:21–29. doi:10.1002/jbm.b.30015

    Article  PubMed  Google Scholar 

  • Urist MR (1972) Osteoinduction in undemineralized bone implants modified by chemical inhibitors of endogenous matrix enzymes: a preliminary report. Clin Orthop Relat Res 87:132–137

    Article  PubMed  CAS  Google Scholar 

  • Urist MR, Strates BS (1971) Bone morphogenetic protein. J Dent Res 50(Suppl 6):1392–1406. doi:10.1177/00220345710500060601

    PubMed  CAS  Google Scholar 

  • Urist MR, Silverman BF, Buring K, Dubuc FL, Rosenberg JM (1967) The bone induction principle. Clin Orthop Relat Res 53:243–283

    Article  PubMed  CAS  Google Scholar 

  • Urist MR, Dowell TA, Hay PH, Strates BS (1968) Inductive substrates for bone formation. Clin Orthop Relat Res 59:59–96

    Article  PubMed  CAS  Google Scholar 

  • Urist MR, Iwata H, Boyd SD, Ceccotti PL (1974) Observations implicating an extracellular enzyme mechanism of control of bone morphogenesis. J Histochem Cytochem 22:88–103. doi:10.1177/22.2.88

    Article  PubMed  CAS  Google Scholar 

  • Urist MR, Granstein R, Nogami H, Svenson L, Murphy R (1977) Transmembrane bone morphogenesis across multiple-walled diffusion chambers: new evidence for a diffusible bone morphogenetic property. Arch Surg 112:612–619

    Article  PubMed  CAS  Google Scholar 

  • Whiteman D, Gropper PT, Wirtz P, Monk P (1993) Demineralized bone powder: clinical applications for bone defects of the hand. J Hand Surg Br 18:487–490. doi:10.1016/0266-7681(93)90154-8

    Article  PubMed  CAS  Google Scholar 

  • Wildemann B, Kadow-Romacker A, Hass NP, Schmidmaier G (2007) Quantification of various growth factors in different demineralized bone matrix preparations. J Biomed Mater Res A 81:437–442. doi:10.1002/jbm.a.31085

    PubMed  CAS  Google Scholar 

  • Winn SR, Uludag H, Hollinger JO (1999) Carrier systems for bone morphogenetic proteins. Clin Orthop Relat Res 367S:S95–S106

    Article  Google Scholar 

  • Yazdi M, Bernick S, Paule WJ, Nimni ME (1991) Postmortem degradation of demineralized bone matrix osteoinductive potential: effect of storage time and temperature. Clin Orthop Relat Res 262:281–285

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Lloyd L. Wolfinbarger, Ph.D. for the insights and suggestions that he provided.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William S. Pietrzak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pietrzak, W.S., Dow, M., Gomez, J. et al. The in vitro elution of BMP-7 from demineralized bone matrix. Cell Tissue Bank 13, 653–661 (2012). https://doi.org/10.1007/s10561-011-9286-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10561-011-9286-9

Keywords

Navigation