Skip to main content
Log in

Histone tail acetylation in brain occurs in an unpredictable fashion after death

  • Published:
Cell and Tissue Banking Aims and scope Submit manuscript

Abstract

Histone acetylation plays a role in the regulation of gene transcription. Yet it is not known whether post-mortem brain tissue is suitable for the analysis of histone acetylation. To examine this question, nucleosomes were isolated from frontal cortex of nine subjects which were obtained at short times after death and immediately frozen at −80°C or maintained at room temperature from 3 h up to 50 h after death and then frozen at −80°C to mimic variable post-mortem delay in tissue processing as currently occurs in normal practice. Chromatin immunoprecipitation assays were performed for two lysine residues, H3K9ac and H3K27ac. Four gene loci were amplified by SyBrGreen PCR: Adenosine A2A receptor, UCHL1, α-synuclein and β-globin. Results showed variability in the histone acetylation level along the post-mortem times and an increase in the acetylation level at an unpredictable time from one case to another and from one gene to another within the first 24 h of post-mortem delay. Similar results were found with three rat brains used to exclude the effects of agonal state and to normalize the start-point as real time zero. Therefore, the present observations show that human post-mortem brain is probably not suitable for comparative studies of histone acetylation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alarcón JM, Malleret G, Touzani K et al (2004) Chromatin acetylation, memory, and LTP are impaired in CBP+/− mice: a model for the cognitive deficit in Rubinstein-Taybi syndrome and its amelioration. Neuron 42:947–959

    Article  PubMed  Google Scholar 

  • Allfrey VG, Faulkner R, Mirsky AE (1964) Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc Natl Acad Sci USA 51:786–794

    Article  PubMed  CAS  Google Scholar 

  • Barrachina M, Ferrer I (2009) DNA methylation of Alzheimer disease and tauopathy-related genes in postmortem brain. J Neuropathol Exp Neurol 68:880–891

    Article  PubMed  CAS  Google Scholar 

  • Barrachina M, Castaño E, Ferrer I (2006) TaqMan PCR assay in the control of RNA normalization in human post-mortem brain tissue. Neurochem Int 49:276–284

    Article  PubMed  CAS  Google Scholar 

  • Barski A, Cuddapah S, Cui K et al (2007) High-resolution profiling of histone methylations in the human genome. Cell 129:823–837

    Article  PubMed  CAS  Google Scholar 

  • Biagioli M, Pinto M, Cesselli D et al (2009) Unexpected expression of alpha- and beta-globin in mesencephalic dopaminergic neurons and glial cells. Proc Natl Acad Sci USA 106:15454–15459

    Article  PubMed  CAS  Google Scholar 

  • Braak H, Alafuzoff I, Arzberger T et al (2006) Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol 112:389–404

    Article  PubMed  Google Scholar 

  • Buesa C, Maes T, Subirada F et al (2004) DNA chip technology in brain banks: confronting a degrading world. J Neuropathol Exp Neurol 63:1003–1014

    PubMed  CAS  Google Scholar 

  • Butler R, Bates GP (2006) Histone deacetylase inhibitors as therapeutics for polyglutamine disorders. Nat Rev Neurosci 7:784–796

    Article  PubMed  CAS  Google Scholar 

  • Calon F, Dridi M, Hornykiewicz O et al (2004) Increased adenosine A2A receptors in the brain of Parkinson’s disease patients with dyskinesias. Brain 127:1075–1084

    Article  PubMed  Google Scholar 

  • Cheung P, Allis CD, Sassone-Corsi P (2000) Signaling to chromatin through histone modifications. Cell 103:263–271

    Article  PubMed  CAS  Google Scholar 

  • Chiba-Falek O, Touchman JW, Nussbaum RL (2003) Functional analysis of intra-allelic variation at NACP-Rep1 in the alpha-synuclein gene. Hum Genet 113:426–431

    Article  PubMed  CAS  Google Scholar 

  • Crecelius A, Götz A, Arzberger T et al (2008) Assessing quantitative post-mortem changes in the gray matter of the human frontal cortex proteome by 2-D DIGE. Proteomics 8:1276–1291

    Article  PubMed  CAS  Google Scholar 

  • De los Santos M, Zambrano A, Aranda A (2007) Combined effects of retinoic acid and histone deacetylase inhibitors on human neuroblastoma SH-SY5Y cells. Mol Cancer Ther 6:1425–1432

    Article  Google Scholar 

  • Durrenberger PF, Fernando S, Kashefi SN et al (2010) Effects of antemortem and postmortem variables on human brain mRNA quality: a BrainNet Europe study. J Neuropathol Exp Neurol 69:70–81

    Article  PubMed  Google Scholar 

  • Faraco G, Pancani T, Formentini L et al (2006) Pharmacological inhibition of histone deacetylases by suberoylanilide hydroxamic acid specifically alters gene expression and reduces ischemic injury in the mouse brain. Mol Pharmacol 70:1876–1884

    Article  PubMed  CAS  Google Scholar 

  • Ferrer I, Armstrong J, Capellari S et al (2007a) Effects of formalin fixation, paraffin embedding, and time of storage on DNA preservation in brain tissue: a BrainNet Europe study. Brain Pathol 17:297–303

    Article  PubMed  CAS  Google Scholar 

  • Ferrer I, Santpere G, Arzberger T et al (2007b) Brain protein preservation largely depends on the postmortem storage temperature: implications for study of proteins in human neurologic diseases and management of brain banks: a BrainNet Europe Study. J Neuropathol Exp Neurol 66:35–46

    Article  PubMed  CAS  Google Scholar 

  • Ferrer I, Martinez A, Boluda S et al (2008) Brain banks: benefits, limitations and cautions concerning the use of post-mortem brain tissue for molecular studies. Cell Tissue Bank 9:181–194

    Article  PubMed  CAS  Google Scholar 

  • Fischer A, Sananbenesi F, Wang X et al (2007) Recovery of learning and memory is associated with chromatin remodelling. Nature 447:178–182

    Article  PubMed  CAS  Google Scholar 

  • Forsberg EC, Downs KM, Christensen HM et al (2000) Developmentally dynamic histone acetylation pattern of a tissue-specific chromatin domain. Proc Natl Acad Sci USA 97:14494–14499

    Article  PubMed  CAS  Google Scholar 

  • Fountoulakis M, Hardmeier R, Höger H et al (2001) Postmortem changes in the level of brain proteins. Exp Neurol 167:86–94

    Article  PubMed  CAS  Google Scholar 

  • Govindarajan N, Agis-Balboa RC, Walter J et al (2011) Sodium butyrate improves memory function in an Alzheimer’s disease mouse model when administered at an advanced stage of disease progression. J Alzheimers Dis May 13. [Epub ahead of print]

  • Guan JS, Haggarty SJ, Giacometti E et al (2009) HDAC2 negatively regulates memory formation and synaptic plasticity. Nature 459:55–60

    Article  PubMed  CAS  Google Scholar 

  • Hebbes TR, Thorne AW, Crane-Robinson C (1988) A direct link between core histone acetylation and transcriptionally active chromatin. EMBO J 7:1395–1402

    PubMed  CAS  Google Scholar 

  • Heintzman ND, Hon GC, Hawkins RD et al (2009) Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature 459:108–112

    Article  PubMed  CAS  Google Scholar 

  • Herman D, Jenssen K, Burnett R et al (2006) Histone deacetylase inhibitors reverse gene silencing in Friedreich’s ataxia. Nat Chem Biol 2:551–558

    Article  PubMed  CAS  Google Scholar 

  • Hogarth P, Lovrecic L, Krainc D (2007) Sodium phenylbutyrate in Huntington’s disease: a dose-finding study. Mov Disord 22:1962–1964

    Article  PubMed  Google Scholar 

  • Huang HS, Matevossian A, Jiang Y (2006) Chromatin immunoprecipitation in postmortem brain. J Neurosci Methods 156:284–292

    Article  PubMed  CAS  Google Scholar 

  • Hunsucker SW, Solomon B, Gawryluk J et al (2008) Assessment of post-mortem-induced changes to the mouse brain proteome. J Neurochem 105:725–737

    Article  PubMed  CAS  Google Scholar 

  • Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074–1080

    Article  PubMed  CAS  Google Scholar 

  • Kretzschmar H (2009) Brain banking: opportunities, challenges and meaning for the future. Nat Rev Neurosci 10:70–78

    Article  PubMed  CAS  Google Scholar 

  • Larsen CN, Krantz BA, Wilkinson KD (1998) Substrate specificity of de-ubiquitinating enzymes: ubiquitin C-terminal hydrolases. Biochemistry 37:3358–3368

    Article  PubMed  CAS  Google Scholar 

  • Lee BM, Mahadevan LC (2009) Stability of histone modifications across mammalian genomes: implications for ‘epigenetic’ marking. J Cell Biochem 108:22–34

    Article  PubMed  CAS  Google Scholar 

  • Levenson JM, O’Riordan KJ, Brown KD et al (2004) Regulation of histone acetylation during memory formation in the hippocampus. J Biol Chem 279:40545–40559

    Article  PubMed  CAS  Google Scholar 

  • Luger K, Mäder AW, Richmond RK et al (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389:251–260

    Article  PubMed  CAS  Google Scholar 

  • Monoranu CM, Grünblatt E, Bartl J et al (2010) Methyl- and acetyltransferases are stable epigenetic markers post-mortem. Cell Tissue Bank Jul 23 [Epub ahead of print]

  • Monti B, Gatta V, Piretti F et al (2010) Valproic acid is neuroprotective in the rotenone rat model of Parkinson’s disease: involvement of alpha-synuclein. Neurotox Res 17:130–141

    Article  PubMed  CAS  Google Scholar 

  • Peleg S, Sananbenesi F, Zovoilis A et al (2010) Altered histone acetylation is associated with age-dependent memory impairment in mice. Science 328:753–756

    Article  PubMed  CAS  Google Scholar 

  • Ren M, Leng Y, Jeong M et al (2004) Valproic acid reduces brain damage induced by transient focal cerebral ischemia in rats: potential roles of histone deacetylase inhibition and heat shock protein induction. J Neurochem 89:1358–1367

    Article  PubMed  CAS  Google Scholar 

  • Richter F, Meurers BH, Zhu C et al (2009) Neurons express hemoglobin alpha- and beta-chains in rat and human brains. J Comp Neurol 515:538–547

    Article  PubMed  CAS  Google Scholar 

  • Ricobaraza A, Cuadrado-Tejedor M, Pérez-Mediavilla A (2009) Phenylbutyrate ameliorates cognitive deficit and reduces tau pathology in an Alzheimer’s disease mouse model. Neuropsychopharmacology 34:1721–1732

    Article  PubMed  CAS  Google Scholar 

  • Rosenfeld JA, Wang Z, Schones DE et al (2009) Determination of enriched histone modifications in non-genic portions of the human genome. BMC Genomics 10:143

    Article  PubMed  Google Scholar 

  • Schnell S, Mendoza C (1997) Enzymological considerations for a theoretical description of the quantitative competitive polymerase chain reaction (QC-PCR). J Theor Biol 184:433–440

    Article  PubMed  CAS  Google Scholar 

  • Sköld K, Svensson M, Norrman M et al (2007) The significance of biochemical and molecular sample integrity in brain proteomics and peptidomics: stathmin 2-20 and peptides as sample quality indicators. Proteomics 7:4445–4456

    Article  PubMed  Google Scholar 

  • Solano SM, Miller DW, Augood SJ et al (2000) Expression of alpha-synuclein, parkin, and ubiquitin carboxy-terminal hydrolase L1 mRNA in human brain: genes associated with familial Parkinson’s disease. Ann Neurol 47:201–210

    Article  PubMed  CAS  Google Scholar 

  • Stadler F, Kolb G, Rubusch L et al (2005) Histone methylation at gene promoters is associated with developmental regulation and region-specific expression of ionotropic and metabotropic glutamate receptors in human brain. J Neurochem 94:324–336

    Article  PubMed  CAS  Google Scholar 

  • Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403:41–45

    Article  PubMed  CAS  Google Scholar 

  • Touchman JW, Dehejia A, Chiba-Falek O et al (2001) Human and mouse alpha-synuclein genes: comparative genomic sequence analysis and identification of a novel gene regulatory element. Genome Res 11:78–86

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Zang C, Rosenfeld JA et al (2008) Combinatorial patterns of histone acetylations and methylations in the human genome. Nat Genet 40:897–903

    Article  PubMed  CAS  Google Scholar 

  • Zhao TC, Cheng G, Zhang LX et al (2007) Inhibition of histone deacetylases triggers pharmacologic preconditioning effects against myocardial ischemic injury. Cardiovasc Res 76:473–481

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Akbarian and Dr. Huang for nucleosomes isolation protocol as well as helpful comments for ChIP to Input ratio determination. We thank T. Yohannan for editorial assistance. This study was funded by grants from the Ministerio de Ciencia e Innovación, Instituto de Salud Carlos III (CP08/00095 to MB; PI08/0582 to IF), the European Commission under the Sixth Framework Programme (BrainNet Europe II, LSHM-CT-2004-503039) to IF and the Fundació La Marató de TV3 (092330) to MB. IVM is a recipient of an IDIBELL predoctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Barrachina.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10561_2011_9278_MOESM1_ESM.pdf

For every specific PCR product in the human artificial post-mortem delays (Fig. 1), the dissociation curve analysis shows lack of formation of primer dimers and unspecific PCR amplifications (DNA: PCR product; NTC: non-template control) (PDF 121 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barrachina, M., Moreno, J., Villar-Menéndez, I. et al. Histone tail acetylation in brain occurs in an unpredictable fashion after death. Cell Tissue Bank 13, 597–606 (2012). https://doi.org/10.1007/s10561-011-9278-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10561-011-9278-9

Keywords

Navigation