Skip to main content

Advertisement

Log in

Adeno-associated virus (AAV) based gene therapy for eye diseases

  • Published:
Cell and Tissue Banking Aims and scope Submit manuscript

Abstract

Gene therapy emerged as important approach in treatment for many inborn disorders caused by genetic defects, as well as other diseases. This manuscript focused on Adeno-associated virus (AAV) based gene therapy to eye diseases. The paper firstly introduced the AAV vectors and the techniques of eye delivery, then summarized some tested genes that were used in past treatment to retinal degeneration disorders. Finally the paper discussed the updated optogenetics and its roles in AAV based gene therapy for eye diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Acland GM, Aguirre GD, Ray J, Zhang Q, Aleman TS et al (2001) Gene therapy restores vision in a canine model of childhood blindness. Nat Genet 28:92–95

    PubMed  CAS  Google Scholar 

  • Acland GM, Aguirre GD, Bennett J, Aleman TS, Cideciyan AV et al (2005) Long-term restoration of rod and cone vision by single dose rAAV-mediated gene transfer to the retina in a canine model of childhood blindness. Mol Ther 12:1072–1082

    Article  PubMed  CAS  Google Scholar 

  • Ali RR, Sarra GM, Stephens C, Alwis MD, Bainbridge JW et al (2000) Restoration of photoreceptor ultrastructure and function in retinal degeneration slow mice by gene therapy. Nat Genet 25:306–310

    Article  PubMed  CAS  Google Scholar 

  • Apte RS, Barreiro RA, Duh E, Volpert O, Ferguson TA (2004) Stimulation of neovascularization by the anti-angiogenic factor PEDF. Invest Ophthalmol Vis Sci 45:4491–4497

    Article  PubMed  Google Scholar 

  • Arrenberg AB, Stainier DY, Baier H, Huisken J (2010) Optogenetic control of cardiac function. Science 330:971–974

    Article  PubMed  CAS  Google Scholar 

  • Barnstable CJ, Tombran-Tink J (2004) Neuroprotective and antiangiogenic actions of PEDF in the eye: molecular targets and therapeutic potential. Prog Retin Eye Res 23:561–577

    Article  PubMed  CAS  Google Scholar 

  • Bi A, Cui J, Ma YP, Olshevskaya E, Pu M et al (2006) Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration. Neuron 50:23–33

    Article  PubMed  CAS  Google Scholar 

  • Bok D (2004) Gene therapy of retinal dystrophies: achievements, challenges and prospects. Novartis Found Symp 255:4–12 discussion -6, 177–8

    Article  PubMed  CAS  Google Scholar 

  • Bok D, Yasumura D, Matthes MT, Ruiz A, Duncan JL et al (2002) Effects of adeno-associated virus-vectored ciliary neurotrophic factor on retinal structure and function in mice with a P216L rds/peripherin mutation. Exp Eye Res 74:719–735

    Article  PubMed  CAS  Google Scholar 

  • Busskamp V, Duebel J, Balya D, Fradot M, Viney TJ et al (2010) Genetic reactivation of cone photoreceptors restores visual responses in retinitis pigmentosa. Science 329:413–417

    Article  PubMed  CAS  Google Scholar 

  • Chong NV, Adewoyin T (2007) Intravitreal injection: balancing the risks. Eye (Lond) 21:313–316

    CAS  Google Scholar 

  • da Cruz L, Rakoczy P, Constable I (1997) Ocular gene therapy: the basic science and current state of research. Aust N Z J Ophthalmol 25:97–104

    Article  PubMed  CAS  Google Scholar 

  • Dejneka NS, Rex TS, Bennett J (2003) Gene therapy and animal models for retinal disease. Dev Ophthalmol 37:188–198

    Article  PubMed  CAS  Google Scholar 

  • Deng WT, Yan Z, Dinculescu A, Pang J, Teusner JT et al (2005) Adeno-associated virus-mediated expression of vascular endothelial growth factor peptides inhibits retinal neovascularization in a mouse model of oxygen-induced retinopathy. Hum Gene Ther 16:1247–1254

    Article  PubMed  CAS  Google Scholar 

  • Dinculescu A, Glushakova L, Min SH, Hauswirth WW (2005) Adeno-associated virus-vectored gene therapy for retinal disease. Hum Gene Ther 16:649–663

    Article  PubMed  CAS  Google Scholar 

  • Drenser KA, Timmers AM, Hauswirth WW, Lewin AS (1998) Ribozyme-targeted destruction of RNA associated with autosomal-dominant retinitis pigmentosa. Invest Ophthalmol Vis Sci 39:681–689

    PubMed  CAS  Google Scholar 

  • Ek ET, Dass CR, Choong PF (2006) Pigment epithelium-derived factor: a multimodal tumor inhibitor. Mol Cancer Ther 5:1641–1646

    Article  PubMed  CAS  Google Scholar 

  • Eriksson K, Magnusson P, Dixelius J, Claesson-Welsh L, Cross MJ (2003) Angiostatin and endostatin inhibit endothelial cell migration in response to FGF and VEGF without interfering with specific intracellular signal transduction pathways. FEBS Lett 536:19–24

    Article  PubMed  CAS  Google Scholar 

  • Ernst OP, Sanchez Murcia PA, Daldrop P, Tsunoda SP, Kateriya S, Hegemann P (2008) Photoactivation of channelrhodopsin. J Biol Chem 283:1637–1643

    Article  PubMed  CAS  Google Scholar 

  • Farah N, Reutsky I, Shoham S (2007) Patterned optical activation of retinal ganglion cells. Conf Proc IEEE Eng Med Biol Soc 2007:6369–6371

    Google Scholar 

  • Fiala A, Suska A, Schluter OM (2010) Optogenetic approaches in neuroscience. Curr Biol 20:R897–R903

    Article  PubMed  CAS  Google Scholar 

  • Friedmann T, Roblin R (1972) Gene therapy for human genetic disease? Science 175:949–955

    Article  PubMed  CAS  Google Scholar 

  • Green ES, Rendahl KG, Zhou S, Ladner M, Coyne M et al (2001) Two animal models of retinal degeneration are rescued by recombinant adeno-associated virus-mediated production of FGF-5 and FGF-18. Mol Ther 3:507–515

    Article  PubMed  CAS  Google Scholar 

  • Hauswirth WW, Li Q, Raisler B, Timmers AM, Berns KI et al (2004) Range of retinal diseases potentially treatable by AAV-vectored gene therapy. Novartis Found Symp 255:179–188 discussion 88–94

    Article  PubMed  CAS  Google Scholar 

  • Ivanova E, Pan ZH (2009) Evaluation of the adeno-associated virus mediated long-term expression of channelrhodopsin-2 in the mouse retina. Mol Vis 15:1680–1689

    PubMed  CAS  Google Scholar 

  • Ivanova E, Hwang GS, Pan ZH, Troilo D (2010) Evaluation of AAV-mediated expression of Chop2-GFP in the marmoset retina. Invest Ophthalmol Vis Sci 51:5288–5296

    Article  PubMed  Google Scholar 

  • Jacobson SG, Cideciyan AV (2010) Treatment possibilities for retinitis pigmentosa. N Engl J Med 363:1669–1671

    Article  PubMed  CAS  Google Scholar 

  • Janovjak H, Szobota S, Wyart C, Trauner D, Isacoff EY (2010) A light-gated, potassium-selective glutamate receptor for the optical inhibition of neuronal firing. Nat Neurosci 13:1027–1032

    Article  PubMed  CAS  Google Scholar 

  • Jia H, Jezequel S, Lohr M, Shaikh S, Davis D et al (2001) Peptides encoded by exon 6 of VEGF inhibit endothelial cell biological responses and angiogenesis induced by VEGF. Biochem Biophys Res Commun 283:164–173

    Article  PubMed  CAS  Google Scholar 

  • Knopfel T, Lin MZ, Levskaya A, Tian L, Lin JY, Boyden ES (2010) Toward the second generation of optogenetic tools. J Neurosci 30:14998–15004

    Article  PubMed  CAS  Google Scholar 

  • Lagali PS, Balya D, Awatramani GB, Munch TA, Kim DS et al (2008) Light-activated channels targeted to ON bipolar cells restore visual function in retinal degeneration. Nat Neurosci 11:667–675

    Article  PubMed  CAS  Google Scholar 

  • Lai YK, Shen WY, Brankov M, Lai CM, Constable IJ, Rakoczy PE (2002) Potential long-term inhibition of ocular neovascularisation by recombinant adeno-associated virus-mediated secretion gene therapy. Gene Ther 9:804–813

    Article  PubMed  CAS  Google Scholar 

  • Lau D, McGee LH, Zhou S, Rendahl KG, Manning WC et al (2000) Retinal degeneration is slowed in transgenic rats by AAV-mediated delivery of FGF-2. Invest Ophthalmol Vis Sci 41:3622–3633

    PubMed  CAS  Google Scholar 

  • LaVail MM, Yasumura D, Matthes MT, Drenser KA, Flannery JG et al (2000) Ribozyme rescue of photoreceptor cells in P23H transgenic rats: long-term survival and late-stage therapy. Proc Natl Acad Sci USA 97:11488–11493

    Article  PubMed  CAS  Google Scholar 

  • Lewin AS, Drenser KA, Hauswirth WW, Nishikawa S, Yasumura D et al (1998) Ribozyme rescue of photoreceptor cells in a transgenic rat model of autosomal dominant retinitis pigmentosa. Nat Med 4:967–971

    Article  PubMed  CAS  Google Scholar 

  • Liang FQ, Aleman TS, Dejneka NS, Dudus L, Fisher KJ et al (2001) Long-term protection of retinal structure but not function using RAAV.CNTF in animal models of retinitis pigmentosa. Mol Ther 4:461–472

    Article  PubMed  CAS  Google Scholar 

  • Lin B, Koizumi A, Tanaka N, Panda S, Masland RH (2008) Restoration of visual function in retinal degeneration mice by ectopic expression of melanopsin. Proc Natl Acad Sci USA 105:16009–16014

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Tonegawa S (2010) Optogenetics 3.0. Cell 141:22–24

    Article  PubMed  CAS  Google Scholar 

  • Mata NL, Moghrabi WN, Lee JS, Bui TV, Radu RA et al (2004) Rpe65 is a retinyl ester binding protein that presents insoluble substrate to the isomerase in retinal pigment epithelial cells. J Biol Chem 279:635–643

    Article  PubMed  CAS  Google Scholar 

  • McGee Sanftner LH, Abel H, Hauswirth WW, Flannery JG (2001) Glial cell line derived neurotrophic factor delays photoreceptor degeneration in a transgenic rat model of retinitis pigmentosa. Mol Ther 4:622–629

    Article  PubMed  CAS  Google Scholar 

  • Miller G (2006) Optogenetics. Shining new light on neural circuits. Science 314:1674–1676

    Article  PubMed  CAS  Google Scholar 

  • Murata T, Kimura H, Sakamoto T, Osusky R, Spee C et al (1997) Ocular gene therapy: experimental studies and clinical possibilities. Ophthalmic Res 29:242–251

    Article  PubMed  CAS  Google Scholar 

  • Narfstrom K, Katz ML, Bragadottir R, Seeliger M, Boulanger A et al (2003a) Functional and structural recovery of the retina after gene therapy in the RPE65 null mutation dog. Invest Ophthalmol Vis Sci 44:1663–1672

    Article  PubMed  Google Scholar 

  • Narfstrom K, Katz ML, Ford M, Redmond TM, Rakoczy E, Bragadottir R (2003b) In vivo gene therapy in young and adult RPE65-/- dogs produces long-term visual improvement. J Hered 94:31–37

    Article  PubMed  CAS  Google Scholar 

  • Sampat KM, Garg SJ (2010) Complications of intravitreal injections. Curr Opin Ophthalmol 21:178–183

    Article  PubMed  Google Scholar 

  • Sarra GM, Stephens C, de Alwis M, Bainbridge JW, Smith AJ et al (2001) Gene replacement therapy in the retinal degeneration slow (rds) mouse: the effect on retinal degeneration following partial transduction of the retina. Hum Mol Genet 10:2353–2361

    Article  PubMed  CAS  Google Scholar 

  • Schlichtenbrede FC, da Cruz L, Stephens C, Smith AJ, Georgiadis A et al (2003a) Long-term evaluation of retinal function in Prph2Rd2/Rd2 mice following AAV-mediated gene replacement therapy. J Gene Med 5:757–764

    Article  PubMed  CAS  Google Scholar 

  • Schlichtenbrede FC, MacNeil A, Bainbridge JW, Tschernutter M, Thrasher AJ et al (2003b) Intraocular gene delivery of ciliary neurotrophic factor results in significant loss of retinal function in normal mice and in the Prph2Rd2/Rd2 model of retinal degeneration. Gene Ther 10:523–527

    Article  PubMed  CAS  Google Scholar 

  • Smith AJ, Schlichtenbrede FC, Tschernutter M, Bainbridge JW, Thrasher AJ, Ali RR (2003) AAV-Mediated gene transfer slows photoreceptor loss in the RCS rat model of retinitis pigmentosa. Mol Ther 8:188–195

    Article  PubMed  CAS  Google Scholar 

  • Thyagarajan S, van Wyk M, Lehmann K, Lowel S, Feng G, Wassle H (2010) Visual function in mice with photoreceptor degeneration and transgenic expression of channelrhodopsin 2 in ganglion cells. J Neurosci 30:8745–8758

    Article  PubMed  CAS  Google Scholar 

  • Tomita H, Sugano E, Isago H, Hiroi T, Wang Z et al (2010) Channelrhodopsin-2 gene transduced into retinal ganglion cells restores functional vision in genetically blind rats. Exp Eye Res 90:429–436

    Article  PubMed  CAS  Google Scholar 

  • Tong JP, Yao YF (2006) Contribution of VEGF and PEDF to choroidal angiogenesis: a need for balanced expressions. Clin Biochem 39:267–276

    Article  PubMed  CAS  Google Scholar 

  • Tsao YP, Ho TC, Chen SL, Cheng HC (2006) Pigment epithelium-derived factor inhibits oxidative stress-induced cell death by activation of extracellular signal-regulated kinases in cultured retinal pigment epithelial cells. Life Sci 79:545–550

    Article  PubMed  CAS  Google Scholar 

  • Wei L (2005) Adenovector pigment epithelium-derived factor (AdPEDF) delivery for wet age-related macular degeneration. Retina 25:S48–S49

    Article  PubMed  Google Scholar 

  • Wright AF (1997) Gene therapy for the eye. Br J Ophthalmol 81:620–623

    Article  PubMed  CAS  Google Scholar 

  • Yabe T, Sanagi T, Yamada H (2010) The neuroprotective role of PEDF: implication for the therapy of neurological disorders. Curr Mol Med 10:259–266

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Ivanova E, Bi A, Pan ZH (2009) Ectopic expression of multiple microbial rhodopsins restores ON and OFF light responses in retinas with photoreceptor degeneration. J Neurosci 29:9186–9196

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yazhen Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, S., Liu, P., Song, L. et al. Adeno-associated virus (AAV) based gene therapy for eye diseases. Cell Tissue Bank 12, 105–110 (2011). https://doi.org/10.1007/s10561-011-9243-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10561-011-9243-7

Keywords

Navigation