Skip to main content
Log in

The Repair Response to Osteochondral Implant Types in a Rabbit Model

  • Published:
Cell and Tissue Banking Aims and scope Submit manuscript

Abstract

Current treatments for damaged articular cartilage (i.e., shaving the articular surface, perforation or abrasion of the subchondral bone, and resurfacing with periosteal and perichondrial resurfacing) often produce fibrocartilage, or hyaline-appearing repair that is not sustained over time (Henche 1967, Ligament and Articular Cartilage Injuries. Springer-Verlag, New York, NY, pp. 157–164; Insall 1974, Clin. Orthop. 101: 61–67; Mitchell and Shepard 1976, J. Bone Joint Surg. [Am.] 58: 230–233; O’Driscoll et al. 1986, J. Bone Joint Surg. [Am.] 68: 1017–1035; 1989, Trans. Orthop. Res. Soc. 14: 145; Kim et al. 1991, J. Bone Joint Surg. [Am.] 73: 1301–1315). Autologous chondrocyte transplantation, although promising, requires two surgeries, has site-dependent and patient age limitations, and has unknown long-term donor site morbidity (Brittberg et al. 1994, N Engl. J. Med. 331: 889–895; Minas 2003, Orthopedics 26: 945–947; Peterson et al. 2003, J. Bone Joint Surg. Am. 85-A(Suppl. 2): S17–S24). Osteochondral allografts remain a widely used method of articular resurfacing to delay arthritic progression. The present study compared the histological response to four types of osteochondral implants in a rabbit model: autograft, frozen, freeze-dried, and fresh implants. Specimens implanted in the femoral groove were harvested at 6 and 12 weeks. Results showed similar restoration of the joint surface regardless of implant type, with a trend toward better repair at the later timepoint. As has been observed in other studies (Frenkel et al. 1997, J. Bone Joint Surg. 79B: 281–286; Toolan et al. 1998, J. Biomed. Mater. Res. 41: 244–250), each group in this study had at least one specimen in which a healthy-appearing surface on the implant was not well-integrated with host tissues. Although the differences were not statistically significant, freeze-dried implants at both timepoints had the best histological scores. The osteochondral grafts tested successfully restored the gross joint surface and congruity. At 12 weeks, no significant differences were observed between the various allografts and autologous osteochondral grafts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • A.D. Aaron J.D. Weidel (1994) ArticleTitleAllograft use in orthopaedic surgery Orthopedics 17 41–48 Occurrence Handle1:STN:280:ByuC28jivFA%3D Occurrence Handle8121833

    CAS  PubMed  Google Scholar 

  • J.C. Albright J.E. Carpenter B.K. Graf M.A. Kelly (1999) Knee and leg: soft tissue trauma J. Beatty (Eds) Orthopaedic Knowledge Update Amer. Acad. Ortho. Surg. Rosemont, IL 533–557

    Google Scholar 

  • P.P. Aubin H.K. Cheah A.M. Davis A.E. Gross (2001) ArticleTitleLong-term followup of fresh femoral osteochondral allografts for posttraumatic knee defects Clin. Orthop. 391 S318–S327 Occurrence Handle11603715

    PubMed  Google Scholar 

  • S.T. Ball D. Amiel S.K. Williams W. Tontz A.C. Chen R.L. Sah W.D. Bugbee (2004) ArticleTitleThe effects of storage on fresh human osteochondral allografts Clin. Orthop. 418 246–52 Occurrence Handle15043126

    PubMed  Google Scholar 

  • A.W. Baltzer J.P. Arnold (2005) ArticleTitleBone-cartilage transplantation from the ipsilateral knee for chondral lesions of the talus Arthroscopy 21 159–166 Occurrence Handle15689864

    PubMed  Google Scholar 

  • E. Billings H.P. Schroeder Particlevon M.T. Mai M. Aratow D. Amiel S.L.Y. Woo R.D. Coutts (1990) ArticleTitleCartilage resurfacing of the rabbit knee Acta Orthop. Scand. 61 201–206 Occurrence Handle2371812

    PubMed  Google Scholar 

  • H.A. Breinan T. Minas H.P. Hsu S. Nehrer S. Shortkroff M. Spector (2001) ArticleTitleChondrocyte implantation in a canine model: change in composition of reparative tissue with time J. Orthop. Res. 19 482–492 Occurrence Handle10.1016/S0736-0266(00)90015-9 Occurrence Handle1:STN:280:DC%2BD3MzjtFeksA%3D%3D Occurrence Handle11398864

    Article  CAS  PubMed  Google Scholar 

  • M. Brittberg A. Lindahl A. Nilsson C. Ohlsson O. Isaksson L. Peterson (1994) ArticleTitleTreatment of deep cartilage defects in the knee with autologous chondrocyte transplantation N Engl. J. Med. 331 889–895 Occurrence Handle10.1056/NEJM199410063311401 Occurrence Handle1:STN:280:ByuA2Mbls1w%3D Occurrence Handle8078550

    Article  CAS  PubMed  Google Scholar 

  • J.A. Buckwalter L.C. Rosenberg E.B. Hunziker (1990) Articular cartilage: Composition, structureresponse to injury and methods facilitating repair J.W. Ewing (Eds) Articular Cartilage and Knee Joint Function Raven Press New York, NY 519–569

    Google Scholar 

  • J.A. Buckwalter L.C. Rosenberg R.D. Coutts E.B. Hunziker A.H. Redi V.C. Mow (1998) Articular cartilage: injury and repair S.L. Woo J.A. Buckwalter (Eds) Injury and Repair of the Musculoskeletal Soft Tissues American Academy of Orthopaedic Surgeons Rosemont, IL 465–482

    Google Scholar 

  • W.D. Bugbee (2002) ArticleTitleFresh osteochondral allografts J. Knee Surg. 15 191–195 Occurrence Handle12152982

    PubMed  Google Scholar 

  • C.J. Campbell (1969) ArticleTitleHealing of articular cartilage defects Clin. Orthop. 64 45–63

    Google Scholar 

  • A.A. Czitrom S. Keating A.E. Gross (1990) ArticleTitleThe viability of articular cartilage in fresh osteochondral allografts after clinical transplantation J. Bone Joint Surg. [Am.] 72 574–581 Occurrence Handle1:STN:280:By%2BB3MnnvVU%3D

    CAS  Google Scholar 

  • Dunn M.G., Linton O.S., Sunwoo M.H. and Gertzman A.A. 2000. Effect of storage time and storage media on osteochondral allograft viability. Presented at American Assoc. Tiss. Banks Annual Mtg.

  • S.R. Frenkel B.C. Toolan D. Menche M. Pitman J.M. Pachence (1997) ArticleTitleChondrocyte transplantation using a collagen bilayer matrix for cartilage repair J. Bone Joint Surg. 79B 281–286

    Google Scholar 

  • G. Friedlaender (1983) ArticleTitleImmune responses to osteochondral allografts. Current knowledge and future directions Clin. Orthop. 174 58–68 Occurrence Handle6339143

    PubMed  Google Scholar 

  • G.E. Friedlaender H.J. Mankin (1981) Bone banking: current methods and suggested guidelines W.W. Tomford (Eds) American Academy of Orthopedic Surgeons Instructional Course Lectures The American Academy of Orthopaedic Surgeons Parkridge, Illinois 13–24

    Google Scholar 

  • J. Gao J.E. Dennis L.A. Solchaga V.M. Goldberg A.I. Caplan (2002) ArticleTitleRepair of osteochondral defect with tissue-engineered two-phase composite material of injectable calcium phosphate and hyaluronan sponge Tissue Eng. 8 827–837 Occurrence Handle1:CAS:528:DC%2BD38Xpt12gtLY%3D Occurrence Handle12459061

    CAS  PubMed  Google Scholar 

  • S.D. Gertzbein J.H. Tait S.R. Devlin S. Argue (1977) ArticleTitleThe antigenicity of chondrocytes Immunology 33 141–145 Occurrence Handle1:STN:280:CSiB3cnit1U%3D Occurrence Handle194833

    CAS  PubMed  Google Scholar 

  • F.N. Ghadially J.A. Fuller W.H. Kirkaldy-Willis (1971) ArticleTitleUltrastructure of full-thickness defects in articular cartilage Arch. Pathol. 92 356–369 Occurrence Handle1:STN:280:CS2D2MrgvFY%3D Occurrence Handle4108153

    CAS  PubMed  Google Scholar 

  • M.D. Gole D. Poulsen J.M. Marzo S.H. Ko I. Ziv (2004) ArticleTitleChondrocyte viability in press-fit cryopreserved osteochondral allografts J. Orthop. Res. 22 781–787 Occurrence Handle10.1016/j.orthres.2003.11.006 Occurrence Handle15183434

    Article  PubMed  Google Scholar 

  • A.E. Gross R.J. Beaver M.N. Mohammed (1992) Fresh small fragment osteochondral allografts used for posttraumatic defects in the knee joint G.A.M. Finerman F.R. Noyes (Eds) Biology and Biomechanics of the Traumatized Synovial Joint: The Knee as a Model The American Academy of Orthopaedic Surgeons Rosemont, Illinois 123–141

    Google Scholar 

  • H.R. Henche (1967) Patellar shaving (indications, techniqueresults) in the knee D. Hastings (Eds) Ligament and Articular Cartilage Injuries Springer-Verlag New York, NY 157–164

    Google Scholar 

  • J.S. Huntley P.G. Bush J.M. McBirnie A.H. Simpson A.C. Hall (2005) ArticleTitleChondrocyte death associated with human femoral osteochondral harvest as performed for mosaicplasty J. Bone Joint Surg. Am. 87 351–360 Occurrence Handle10.2106/JBJS.D.02086 Occurrence Handle1:STN:280:DC%2BD2M%2FlvVOksw%3D%3D Occurrence Handle15687159

    Article  CAS  PubMed  Google Scholar 

  • E.B. Hunziker T.M. Quinn (2003) ArticleTitleremoval of articular cartilage leads to loss of chondrocytes from cartilage bordering the wound edge J. Bone Joint Surg. Am. 85-A IssueID2 85–92 Occurrence Handle12721349

    PubMed  Google Scholar 

  • M.B. Hurtig K. Novak R. McPherson S. McFadden L.E. McGann K. Muldrew N.S. Schachar (1998) ArticleTitleOsteochondral dowel transplantation for repair of focal defects in the knee: an outcome study using an ovine model Vet. Surg. 27 5–16 Occurrence Handle1:STN:280:DyaK1c7htVOmsQ%3D%3D Occurrence Handle9449173

    CAS  PubMed  Google Scholar 

  • J. Insall (1974) ArticleTitleThe Pridie debridement operation for osteoarthritis of the knee Clin. Orthop. 101 61–67 Occurrence Handle4837919

    PubMed  Google Scholar 

  • M.E. Kim M.E. Moran R.B. Salter (1991) ArticleTitleThe potential for regeneration of articular cartilage in defects created by chondral shaving and subchondral abrasion J. Bone Joint Surg. [Am.] 73 1301–1315 Occurrence Handle1:STN:280:By2D3M7ot1I%3D

    CAS  Google Scholar 

  • J.G. Lane W.L. Tontz SuffixJr. S.T. Ball J.B. Massie A.C. Chen W.C. Bae M.E. Amiel R.L. Sah D. Amiel (2001) ArticleTitleA morphologic, biochemical, and biomechanical assessment of short-term effects of osteochondral autograft plug transfer in an animal model Arthroscopy 17 856–863 Occurrence Handle1:STN:280:DC%2BD3MrltlGjtw%3D%3D Occurrence Handle11600984

    CAS  PubMed  Google Scholar 

  • F. Langer A.E. Gross (1974) ArticleTitleImmunogenicity of allograft articular cartilage J. Bone Joint Surg. Am. 56 297–304 Occurrence Handle1:STN:280:CSqC3MvovVw%3D Occurrence Handle4452688

    CAS  PubMed  Google Scholar 

  • R.C. Locht A.E. Gross F. Langer (1984) ArticleTitleLate osteochondral resurfacing for tibial plateau fractures J. Bone Joint Surg. [Am.] 66 328–335 Occurrence Handle1:STN:280:BiuC3srovFE%3D

    CAS  Google Scholar 

  • A.G. McDermott F. Langer K.P.H. Pritzker A.E. Gross (1985) ArticleTitleFresh small-fragment osteochondral allografts. Long-term follow-up study on first 100 cases Clin. Orthop. 197 96–102 Occurrence Handle3893835

    PubMed  Google Scholar 

  • M.N. Mahomed R.J. Beaver A.E. Gross (1992) ArticleTitleThe long-term success of freshsmall fragment osteochondral allografts used for intraarticular post-traumatic defects in the knee joint Orthopedics 15 1191–1195 Occurrence Handle1:STN:280:ByyD38jot1M%3D Occurrence Handle1409129

    CAS  PubMed  Google Scholar 

  • T. Makino H. Fujioka M. Kurosaka N. Matsui H. Yoshihara M. Tsunoda K. Mizuno (2001) ArticleTitleHistologic analysis of the implanted cartilage in an exact-fit osteochondral transplantation model Arthroscopy 17 747–751 Occurrence Handle1:STN:280:DC%2BD3Mvpt1Ohug%3D%3D Occurrence Handle11536095

    CAS  PubMed  Google Scholar 

  • H.J. Mankin (1982) ArticleTitleThe response of articular cartilage to mechanical injury J. Bone Joint Surg. [Am.] 64 460–466 Occurrence Handle1:STN:280:Bi2C2c3ms1c%3D

    CAS  Google Scholar 

  • M.H. Meyers W. Akeson F.R. Convery (1989) ArticleTitleResurfacing of the knee with fresh osteochondral allograft J. Bone Joint Surg. [Am.] 71 704–713 Occurrence Handle1:STN:280:BiaB2sfhvVY%3D

    CAS  Google Scholar 

  • T. Minas (2003) ArticleTitleAutologous chondrocyte implantation in the arthritic knee Orthopedics 26 945–947 Occurrence Handle14503759

    PubMed  Google Scholar 

  • N. Mitchell N. Shepard (1976) ArticleTitleThe resurfacing of adult rabbit articular cartilage by multiple perforations through the subchondral bone J. Bone Joint Surg. [Am.] 58 230–233 Occurrence Handle1:STN:280:CSmC2c3ls1Q%3D

    CAS  Google Scholar 

  • M.N. Mohammed R.J. Beaver A.E. Gross (1992) ArticleTitleThe long-term success of freshsmall fragment osteochondral allografts used for intraarticular post-traumatic defects in the knee joint Orthopedics 15 1191–1199

    Google Scholar 

  • V.C. Mow A. Ratcliffe M.P. Rosenwasser J.A. Buckwalter (1991) ArticleTitleExperimental studies on repair of large osteochondral defects at a high weight bearing area of the knee joint: A tissue engineering study J. Biomech. Eng. 113 198–207 Occurrence Handle1:STN:280:By6A2c3itFY%3D Occurrence Handle1875694

    CAS  PubMed  Google Scholar 

  • Z. Nevo D. Robinson S. Horowitz A. Hasharoni A. Yayon (1998) ArticleTitleThe manipulated mesenchymal stem cells in regenerated skeletal tissues Cell Transplant. 7 63–70 Occurrence Handle1:STN:280:DyaK1c7kvFCjug%3D%3D Occurrence Handle9489764

    CAS  PubMed  Google Scholar 

  • S.W. O’Driscoll R.F. Keely R.B. Salter (1986) ArticleTitleThe chondrogenic potential of free autogenous periosteal grafts for the biological resurfacing of major full-thickness defects in joint surfaces under the influence of continuous passive motion: An experimental investigation in the rabbit J. Bone Joint Surg. [Am.] 68 1017–1035 Occurrence Handle1:STN:280:BimA3cvltFQ%3D

    CAS  Google Scholar 

  • S.W. O’Driscoll J.P. Delaney R.B. Salter (1989) ArticleTitleExperimental patellar resurfacing using periosteal autografts: Reasons for failure Trans. Orthop. Res. Soc. 14 145

    Google Scholar 

  • A.W. Pearsall SuffixIV. J.A. Tucker R.B. Hester R.J. Heitman (2004) ArticleTitleChondrocyte viability in refrigerated osteochondral allografts used for transplantation within the knee Am. J. Sports Med. 32 125–131 Occurrence Handle14754735

    PubMed  Google Scholar 

  • L. Peterson T. Minas M. Brittberg A. Lindahl (2003) ArticleTitleTreatment of osteochondritis dissecans of the knee with autologous chondrocyte transplantation: results at two to ten years J. Bone Joint Surg. Am. 85-A IssueID2 7–24

    Google Scholar 

  • T.M. Quinn E.B. Hunziker (2002) ArticleTitleControlled enzymatic matrix degradation for integrative cartilage repair: effects on viable cell density and proteoglycan deposition Tissue Eng. 8 799–806 Occurrence Handle10.1089/10763270260424150 Occurrence Handle1:CAS:528:DC%2BD38Xpt12gtLw%3D Occurrence Handle12459058

    Article  CAS  PubMed  Google Scholar 

  • R.S. Rohde R.K. Studer C.R. Chu (2004) ArticleTitleMini-pig fresh osteochondral allografts deteriorate after 1 week of cold storage Clin. Orthop. 427 226–233 Occurrence Handle15552162

    PubMed  Google Scholar 

  • N.S. Schachar K. Novak M. Hurtig K. Muldrew R. McPherson G. Wohl R.F. Zernicke L.E. McGann (1999) ArticleTitleTransplantation of cryopreserved osteochondral Dowel allografts for repair of focal articular defects in an ovine model J. Orthop. Res. 17 909–919 Occurrence Handle10.1002/jor.1100170616 Occurrence Handle1:STN:280:DC%2BD3c%2Fps1eiuw%3D%3D Occurrence Handle10632458

    Article  CAS  PubMed  Google Scholar 

  • F. Shapiro S. Koide M.J. Glimcher (1993) ArticleTitleCell origin and differentiation in the repair of full- thickness defects of articular cartilage J. Bone Joint Surg. (Am.) 75-A 532–553

    Google Scholar 

  • C.H. Siebert O. Miltner U. Schneider T. Wahner S. Koch C. Niedhart (2001) ArticleTitleHealing of osteochondral transplants–animal experiment studies using a sheep model Z Orthop. Ihre Grenzgeb 139 382–386 Occurrence Handle10.1055/s-2001-17978 Occurrence Handle1:STN:280:DC%2BD3MrlvFagtw%3D%3D Occurrence Handle11605287

    Article  CAS  PubMed  Google Scholar 

  • C.H. Siebert O. Miltner M. Weber S. Sopka S. Koch C. Niedhart (2003) ArticleTitleHealing of osteochondral grafts in an ovine model under the influence of bFGF Arthroscopy 19 182–187 Occurrence Handle12579151

    PubMed  Google Scholar 

  • C.B. Sirlin J. Brossmann R.D. Boutin M.N. Pathria F.R. Convery W. Bugbee R. Deutsch L.K. Lebeck D. Resnick (2001) ArticleTitleShell osteochondral allografts of the knee: comparison of mr imaging findings and immunologic responses Radiology 219 35–43 Occurrence Handle1:STN:280:DC%2BD3M3hslGkug%3D%3D Occurrence Handle11274532

    CAS  PubMed  Google Scholar 

  • S. Stevenson (1987) ArticleTitleThe immune response to osteochondral allografts in dogs J. Bone Joint Surg. Am. 69 573–582 Occurrence Handle1:STN:280:BiiC1MvpvVY%3D Occurrence Handle3553198

    CAS  PubMed  Google Scholar 

  • B.C. Toolan S. Frenkel D. Pereira H. Alexander (1998) ArticleTitleDevelopment of a novel osteochondral graft for cartilage repair J. Biomed. Mater. Res. 41 244–250 Occurrence Handle10.1002/(SICI)1097-4636(199808)41:2<244::AID-JBM9>3.0.CO;2-I Occurrence Handle1:CAS:528:DyaK1cXjvFejurY%3D Occurrence Handle9638529

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sally R. Frenkel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frenkel, S.R., Kubiak, E.N. & Truncale, K.G. The Repair Response to Osteochondral Implant Types in a Rabbit Model. Cell Tissue Banking 7, 29–37 (2006). https://doi.org/10.1007/s10561-005-0068-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10561-005-0068-0

Keywords

Navigation