Skip to main content
Log in

The Technique of Inverse Multidimensional Scaling for the Synthesis of Machine Learning Models

  • Published:
Cybernetics and Systems Analysis Aims and scope

Abstract

The created methodology offers a technique of projecting a mental model obtained based on visual analytics into the space of machine use. The efficiency of the use of visual analytics consists of mapping the multidimensional space of features into the visual space and providing a mechanism for formalizing the mental model. This allows a person to be integrated into the process of formation and training of a machine learning model. Examples that demonstrate the efficiency of using the proposed methodology for solving practical problems are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Li, H. Xiong, X. Li, X. Wu, X. Zhang, J. Liu, J. Bian, and D. Dou, “Interpretable deep learning: Interpretation, interpretability, trustworthiness, and beyond,” Knowl. Inf. Syst., Vol. 64, No. 12, 3197–3234 (2022). https://doi.org/10.1007/s10115-022-01756-8.

    Article  Google Scholar 

  2. B. Benzougagh, S. G. Meshram, B. E. Fellah, et al., “Mapping of land degradation using spectral angle mapper approach (SAM): The case of Inaouene watershed (Northeast Morocco),” Model. Earth Syst. Environ. (2023). https://doi.org/10.1007/s40808-023-01711-8.

    Article  Google Scholar 

  3. H. Hirwa, Q. Zhang, F. Li, et al., “Water accounting and productivity analysis to improve water savings of Nile river basin, East Africa: From accountability to sustainability,” Agronomy, Vol. 12, No. 4, 818 (2022). https://doi.org/10.3390/agronomy12040818.

    Article  Google Scholar 

  4. M. Odusami, R. Maskeliunas, R. Damasevicius, “Pixel-level fusion approach with vision transformer for early detection of Alzheimer’s disease,” Electronics, Vol. 12, No. 5, 1218 (2023). https://doi.org/10.3390/electronics12051218.

    Article  Google Scholar 

  5. N. F. Kirichenko, Yu. G. Krivonos, and N. P. Lepekha, “Synthesis of systems of neurofunctional transformations in classification problems,” Cybern. Syst. Analysis, Vol. 43, No. 3, 353–361 (2007). https://doi.org/10.1007/s10559-007-0056-4.

    Article  MathSciNet  MATH  Google Scholar 

  6. X. Wu, L. Xiao, Y. Sun, J. Zhang, T. Ma, and L. He, “A survey of human-in-the-loop for machine learning,” Future Gener. Comput. Syst., Vol. 135, 364–381 (2022). https://doi.org/10.1016/j.future.2022.05.014.

    Article  Google Scholar 

  7. A. Bäuerle, Á. A. Cabrera, F. Hohman, M. Maher, D. Koski, X. Suau, T. Barik, and D. Moritz, “Symphony: Composing interactive interfaces for machine learning,” CHI ’22: Proc. of the 2022 CHI Conf. on Human Factors in Computing Systems, 210 (2022). https://doi.org/10.1145/3491102.3502102.

  8. Á. A. Cabrera, M. T. Ribeiro, B. Lee, R. Deline, A. Perer, and S. M. Drucker, “What did my AI learn? How data scientists make sense of model behavior,” ACM Trans. Comput.-Hum. Interact., Vol. 30, No. 1, 1–27 (2023). https://doi.org/10.1145/3542921.

    Article  Google Scholar 

  9. G. Alicioglu and B. Sun, “A survey of visual analytics for Explainable Artificial Intelligence methods,” Comput. Graph., Vol. 102, 502–520 (2022). https://doi.org/10.1016/j.cag.2021.09.002.

    Article  Google Scholar 

  10. J. A. Esterhuizen, B. R. Goldsmith, and S. Linic, “Interpretable machine learning for knowledge generation in heterogeneous catalysis,” Nat. Catal., Vol. 5, No. 3, 175–184 (2022). https://doi.org/10.1038/s41929-022-00744-z.

    Article  Google Scholar 

  11. F. Friedrich, W. Stammer, P. Schramowski, and K. Kersting, “A typology to explore and guide explanatory interactive machine learning,” arXiv:2203.03668 [cs.LG] 4 Mar (2022). https://doi.org/10.48550/arXiv.2203.03668.

  12. Y. Ma, T. Xie, J. Li, and R. Maciejewski, “Explaining vulnerabilities to adversarial machine learning through visual analytics,” IEEE Trans. Vis. Comput. Graph., Vol. 26, No. 1, 1075–1085 (2019). https://doi.org/10.1109/TVCG.2019.2934631.

    Article  Google Scholar 

  13. J. Yuan, C. Chen, W. Yang, M. Liu, J. Xia, and S. Liu, “A survey of visual analytics techniques for machine learning,” Comp. Visual Media, Vol. 7, 3–36 (2021). https://doi.org/10.1007/s41095-020-0191-7.

    Article  Google Scholar 

  14. L. Wolf, T. Galanti, and T. Hazan, “A formal approach to explainability,” in: Proc. of the 2019 AAAI/ACM Conf. on AI, Ethics, and Society, Association for Computing Machinery, New York, NY, USA (2019), pp. 255–261. https://doi.org/10.1145/3306618.3314260.

  15. J. Thompson, “Mental models and interpretability in AI fairness tools and code environments,” in: C. Stephanidis et al. (eds.), HCI International 2021 — Late Breaking Papers: Multimodality, eXtended Reality, and Artificial Intelligence, HCII 2021; Lecture Notes in Computer Science, Vol. 13095, Springer, Cham (2021), pp. 574–585. https://doi.org/10.1007/978-3-030-90963-5_43.

  16. D. Sacha, M. Kraus, D. A. Keim, and M. Chen, “VIS4ML: An ontology for visual analytics assisted machine learning,” IEEE Trans. Vis. Comput. Graph., Vol. 25, No. 1, 385–395 (2018). https://doi.org/10.1109/TVCG.2018.2864838.

    Article  Google Scholar 

  17. Iu. G. Kryvonos, Iu. V. Krak, O. V. Barmak, and A. I. Kulias, “Methods to create systems for the analysis and synthesis of communicative information,” Cybern. Syst. Analysis, Vol. 53, No. 6, 847–856 (2017). https://doi.org/10.1007/s10559-017-9986-7.

  18. I. Krak, O. Barmak, E. Manziuk, and A. Kulias, “Data classification based on the features reduction and piecewise linear separation,” in: P. Vasant, I. Zelinka, and G.-W. Weber (eds.), Intelligent Computing and Optimization, ICO 2019; Advances in Intelligent Systems and Computing, Vol. 1072, Springer, Cham (2020), pp. 282–289 https://doi.org/10.1007/978-3-030-33585-4_28.

  19. O. Barmak, E. Manziuk, O. Kalyta, Iu. Krak, V. Kuznetsov, and A. Kulias, “Recognition of emotional expressions using the grouping crowdings of characteristic mimic states,” CEUR Workshop Proc., Vol. 2866, 174–183 (2020).

  20. O. Barmak, Y. Krak, and E. Manziuk, “Characteristics for choice of models in the ansables classification,” CEUR Workshop Proc., Vol. 2139, 171–179 (2018). URL: https://ceur-ws.org/Vol-2139/171-179.pdf.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iu. Krak.

Additional information

Translated from Kibernetyka ta Systemnyi Analiz, No. 5, September–October, 2023, pp. 46–54.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krak, I., Barmak, O. The Technique of Inverse Multidimensional Scaling for the Synthesis of Machine Learning Models. Cybern Syst Anal 59, 725–732 (2023). https://doi.org/10.1007/s10559-023-00608-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10559-023-00608-9

Keywords

Navigation