Skip to main content
Log in

Adaptive Algorithms for Solving Eigenvalue Problems in the Variable Computer Environment of Supercomputers

  • SOFTWARE–HARDWARE SYSTEMS
  • Published:
Cybernetics and Systems Analysis Aims and scope

Abstract

The authors propose software for the analysis and solution to the algebraic eigenvalue problem using an MIMD computer with GPUs, which includes parallel algorithms and programs with the functions of automatic adaptive configuration of the variable computer environment (multilevel parallelism, variable topology of interprocessor communications, mixed word length, caching, etc.) on the mathematical properties of the problem identified in the computer and the architectural features to ensure the reliability of the solution results and the efficient use of computing resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. V. Sergienko, I. N. Molchanov, and A. N. Khimich, “Intelligent technologies of high-performance computing,” Cybern. Syst. Analysis, Vol. 46, No. 5, 833–844 (2010). https://doi.org/https://doi.org/10.1007/s10559-010-9265-3.

    Article  Google Scholar 

  2. I. V. Sergienko and A. N. Khimich, “ Mathematical modeling: From MESM to exaflops,” Visn. Nac. Akad. Nauk Ukr., No. 8, 37–50 (2019). https://doi.org/10.15407/visn2019.08.037.

  3. J. Dongarra, P. Beckman, T. Moore, et al., “The International Exascale Software Project roadmap,” Int. J. High Perform. Comput. Appl., Vol. 25, Iss. 1, 3–60 (2011). https://doi.org/10.1177/1094342010391989.

  4. A. N. Khimich, I. N. Molchanov, A. V. Popov, T. V. Chistyakova, and M. F. Yakovlev, Parallel Algorithms to Solve Problems in Computational Mathematics [in Russian], Naukova Dumka, Kyiv (2008).

    Google Scholar 

  5. O. V. Popov, O. V. Rudich, and O. V. Chystiakov, “Multi-level model of parallel computing for linear algebra problems,” Problems in Programming, No. 2–3, 83–92 (2018).

    Article  Google Scholar 

  6. O. Popov and O. Chystiakov, “On the efficiency of algorithms with multi-level parallelism,” Physico-Mathematical Modelling and Informational Technologies, Issue 33, 133–137 (2021). https://doi.org/10.15407/fmmit2021.33.133.

  7. O. V. Chistyakov, “Special features of software development to solve eigenvalue problems with sparse matrices by hybrid computers,” Komp. Matematika, No. 1, 75–84 (2015).

    Google Scholar 

  8. A. N. Khimich, V. À. Dekret, A. V. Popov, and A. V. Chistyakov, “numerical study of the stability of composite materials on computers of hybrid architecture,” J. Autom. Inform. Sci., Vol. 50, Iss. 7, 7–24 (2018). https://doi.org/10.1615/JAutomatInfScien.v50.i7.20.

  9. O. M. Khimich, O. V. Chistyakov, and V. M. Brusnikin, “Hybrid algorithm of the generalized conjugate gradient method for the eigenvalue problem with symmetric sparse matrices,” Mathematical Machines and Systems, No. 3, 3–13 (2015).

    Google Scholar 

  10. A. N. Khimich, A. V. Popov, and O. V. Chistyakov, “Hybrid algorithms for solving the algebraic eigenvalue problem with sparse matrices,” Cybern. Syst. Analysis, Vol. 53, No. 6, 937–949 (2017). https://doi.org/https://doi.org/10.1007/s10559-017-9996-5.

    Article  MATH  Google Scholar 

  11. O. M. Khimich, O. V. Popov, O. V. Chistyakov, and V. A. Sidoruk, “A parallel algorithm for solving a partial eigenvalue problem for block-diagonal bordered matrices,” Cybern. Syst. Analysis, Vol. 56, No. 6, 913–923 (2020). https://doi.org/https://doi.org/10.1007/s10559-020-00311-z.

    Article  MathSciNet  MATH  Google Scholar 

  12. I. N. Molchanov, A. V. Popov, and A. N. Khimich, “Algorithm to solve the partial eigenvalue problem for large profile matrices,” Cybern. Syst. Analysis, Vol. 28, No. 2, 281–286 (1992). https://doi.org/https://doi.org/10.1007/BF01126215.

    Article  MATH  Google Scholar 

  13. “Message Passing Interface Forum. MPI: A Message-passing Interface Standard,” Int. J. High Perform. Comput. Appl., Vol. 8, No. 3/4, 157–414 (1994).

  14. OpenMP. Architecture Review Board. URL: http://www.openmp.org/.

  15. ÑUDA Toolkit 11.6 Update 2 Downloads. NVIDIA Developed. URL: https://developer.nvidia.com/cuda-downloads.

  16. V. A. Sydoruk, P. S. Yershov, D. O. Bohurskyi, and O. R. Marochkanych, “Intellectualization of computation for mathematical modeling of complex processes and objects,” Komp. Matematika, No. 1, 143–150 (2019).

    Google Scholar 

  17. I. N. Molchanov, I. S. Levchenko, N. N. Fedonyuk, A. N. Khimich, and T. V. Chistyakova, “Numerical simulation of the stress concentration in an elastic half-space with a two-layer inclusion,” Int. Appl. Mech., Vol. 38, No. 3, 308–314 (2002). https://doi.org/https://doi.org/10.1023/A:1016078010683.

    Article  MATH  Google Scholar 

  18. A. I. Lurie, Theory of Elasticity, Berlin–Heidelberg (2005).

  19. E. Nikolaevskaya, A. Khimich, and T. Chistyakova, Programming with Multiple Precision, Ser. Studies in Computational Intelligence, Vol. 397, Springer, Berlin–Heidelberg (2012).

  20. Î. Ì. Khimich, T. V. Chistyakova, V. A. Sidoruk, and P. S. Yershov, “Adaptive computer technologies for solving problems of computational and applied mathematics,” Cybern. Syst. Analysis, Vol. 57, No. 6, 990–997 (2021). https://doi.org/https://doi.org/10.1007/s10559-021-00424-z.

    Article  MATH  Google Scholar 

  21. A. Buttari, J. Langou, J. Kurzak, and J. Dongarra, “A class of parallel tiled linear algebra algorithms for multicore architectures,” Parallel Computing, Vol. 35, Iss. 1, 38–53 (2009). https://doi.org/10.1016/j.parco.2008.10.002.

  22. S. Pissanetzky, Sparse Matrix Technology, 1st ed., Elsevier (1984).

  23. Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed., SIAM (2003).

  24. A. V. Popov, “Parallel algorithm for solving linear system with sparse symmetric matrices,” Probl. Programuv., No. 2–3, 111–118 (2008).

  25. J. A. George and J. W-H. Liu, Computer Solution of Large Sparse Positive Definite Systems, Prentice-Hall Inc., Englewood Cliffs, NJ (1981).

  26. B. N. Parlet, The Symmetric Eigenvalue Problem, SIAM (1998). https://doi.org/https://doi.org/10.1137/1.9781611971163.

    Article  Google Scholar 

  27. O. V. Popov and O. V. Rudych, “On solving systems of linear equations on hybrid architecture computers,” Mathematical and Computer Modelling, Ser. Physical and Mathematical Sciences, Issue 15, 158–164 (2017).

    Google Scholar 

  28. SCIT Supercomputer of V. M. Glushkov Institute of Cybernetics, National Academy of Sciences of Ukraine. URL: http://icybcluster.org.ua.

  29. The SuiteSparse Matrix Collection. URL: https://cise.ufl.edu/research/sparse/matrices.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. M. Khimich.

Additional information

Translated from Kibernetyka ta Systemnyi Analiz, No. 3, May–June, 2023, pp. 141–156

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khimich, O.M., Popov, O.V., Chistyakov, O.V. et al. Adaptive Algorithms for Solving Eigenvalue Problems in the Variable Computer Environment of Supercomputers. Cybern Syst Anal 59, 480–492 (2023). https://doi.org/10.1007/s10559-023-00583-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10559-023-00583-1

Keywords

Navigation