Skip to main content
Log in

High-Performance Supercomputer Technologies of Simulation and Identification of Nanoporous Systems with Feedback for n-Component Competitive Adsorption

  • SOFTWARE–HARDWARE SYSTEMS
  • Published:
Cybernetics and Systems Analysis Aims and scope

Abstract

High-performance supercomputer computing technologies have been developed to model and identify the parameters of complex n-component competitive adsorption processes in nanoporous cybersystems with feedback. Using the Laplace transform and the Heaviside operating method with the decomposition of a nonlinear system with Langmuir-type adsorption equilibrium conditions, an efficient parallelization of the vector components of the model solution is proposed. The results of numerical experiments based on parallel computations using multicore computers are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Puértolas, M. V. Navarro, J. M. Lopez, R. Murillo, A. M. Mastral, and T. Garcia, “Modelling the heat and mass transfers of propane onto a ZSM-5 zeolite,” Separation and Purification Technology, Vol. 86, 127–136 (2012). https://doi.org/10.1016/j.seppur.2011.10.036.

  2. N. K. Kanellopoulos, Nanoporous Materials: Advanced Techniques for Characterization, Modeling, and Processing, CRC Press, London (2011).

    Google Scholar 

  3. K. D. Hammond and W. C. Conner Jr., “Chapter one — analysis of catalyst surface structure by physical sorption,” Advances in Catalysis, Vol. 56, 1–101 (2013). https://doi.org/10.1016/B978-0-12-420173-6.00001-2.

  4. J. Karger, D. M. Ruthven, and D. N. Theodorou, Diffusion in Nanoporous Materials,Weinheim,Wiley-VCH (2012).

    Book  Google Scholar 

  5. R. Krisnha and J. M. van Baten, “Investigating the non-idealities in adsorption of CO2-bearing mixtures in cation-exchanged zeolites,” Separation and Purification Technology,” Vol. 206, 208–217 (2018). https://doi.org/10.1016/j.seppur.2018.06.009.

  6. S. Leclerc, M. Petryk, D. Canet, and J. Fraissard, “Competitive diffusion of gases in a zeolite using proton NMR and slice selection procedure,” Catalysis Today, Vol. 187, No. 1, 104–107 (2012). https://doi.org/10.1016/j.cattod.2011.09.007.

    Article  Google Scholar 

  7. M. Petryk, S. Leclerc, D. Canet, and J. Fraissard, “Modeling of gas transport in a microporous solid using a slice selection procedure: Application to the diffusion of benzene in ZSM5,” Catalysis Today, Vol. 139, No. 3, 234–240 (2008). https://doi.org/10.1016/j.cattod.2008.05.034.

    Article  Google Scholar 

  8. M. Petryk, S. Leclerc, D. Canet, I. V. Sergienko, V. S. Deineka, and J. Fraissard, “Competitive diffusion of gases in a zeolite bed: NMR and slice selection procedure, modeling, and parameter identification,” J. Phys. Chem. C, Vol. 119, No. 47, 26519–26525 (2015). https://doi.org/10.1021/acs.jpcc.5b07974.

    Article  Google Scholar 

  9. I. V. Sergienko, M. R. Petryk, S. Leclerc, and J. Fraissard, “Highly efficient methods of the identification of competitive diffusion parameters in heterogeneous media of nanoporous particles,” Cybern. Syst. Analysis, Vol. 51, No. 4, 529–546 (2015). https://doi.org/10.1007/s10559-015-9744-7.

    Article  MATH  Google Scholar 

  10. M. R. Petryk, I. V. Boyko, O. M. Khimich, and M. M. Petryk, “High-performance supercomputer technologies of simulation of nanoporous feedback systems for adsorption gas purification,” Cybern. Syst. Analysis, Vol. 56, No. 5, 835–847 (2020). https://doi.org/10.1007/s10559-020-00304-y.

    Article  MATH  Google Scholar 

  11. M. Petryk, M. Ivanchov, S. Leclerc, D. Canet, and J. Fraissard, “Competitive adsorption and diffusion of gases in a microporous solid,” in: K. Margeta and A. Farkas (eds.), Zeolites — New Challenges, IntecOpen, London (2019), pp. 1–23. URL: https://www.intechopen.com/online-first/competitive-adsorption-and-diffusion-of-gases-in-a-microporous-solid.

  12. O. M. Khimich, M. R. Petryk, D. M. Mikhalyk, I. V. Boyko, O. V. Popov, and V. A. Sydoruk, Methods of Mathematical Modeling and Identification of Complex Processes and Systems on the Basis of High-Performance Calculations [in Ukrainian], National Academy of Sciences of Ukraine, Kyiv (2019).

  13. M. R. Petryk, A. Khimich, M. M. Petryk, and J. Fraissard, “Experimental and computer simulation studies of dehydration on microporous adsorbent of natural gas used as motor fuel,” Fuel, Vol. 239, 1324–1330 (2019). https://doi.org/10.1016/j.fuel.2018.10.134.

  14. D. Mykhalyk, M. Petryk, M. M. Petryk, O. Petryk, and I. Mudryk, “Mathematical modeling of hydrocarbons adsorption in nanoporous catalyst media using nonlinear Langmuir’s isotherm using activation energy,” in: Proc. 9th International Conference on Advanced Computer Information Technologies (ACIT’2019) (Budejovice, Czech Republic, 5–7 June, 2019), Budejovice (2019), pp. 72–75.

  15. M. A. Lavrent’ev and B. V. Shabat, Methods of the Theory of Functions of Complex Variable [in Russian], Nauka, Moscow (1973).

  16. V. V. Nemytskii and V. V. Stepanov, Qualitative Theory of Differential Equations (New Edition), Dover Publications Inc., New York (1990).

    MATH  Google Scholar 

  17. Microsoft Visual Studio C++ Documentation. URL: https://docs.microsoft.com/en-us/cpp/parallel/parallel-programming-in-visual-cpp?view=vs-2019 [Accessed Nov 12, 2019].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Petryk.

Additional information

Translated from Kibernetyka ta Systemnyi Analiz, No. 2, March–April, 2021, pp. 170–183.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petryk, M.R., Boyko, I.V., Khimich, O.M. et al. High-Performance Supercomputer Technologies of Simulation and Identification of Nanoporous Systems with Feedback for n-Component Competitive Adsorption. Cybern Syst Anal 57, 316–328 (2021). https://doi.org/10.1007/s10559-021-00357-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10559-021-00357-7

Keywords

Navigation