Skip to main content
Log in

Stochastic Optimal Control of a Descriptor System

  • Published:
Cybernetics and Systems Analysis Aims and scope

Abstract

We study the optimal control problem for a descriptor system whose evolution is described by Ito’s differential-algebraic equation. The quadratic cost functional is considered. The main constraint is that the characteristic matrix pencil corresponding to the equation is regular. We establish the conditions for the existence and uniqueness of the optimal control and the corresponding optimal state. The results are illustrated on an example of a descriptor system that describes transient states in a radio engineering filter with random perturbations in the form of white noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. A. Vlasenko, A. G. Rutkas, and V. V. Semenets, “Sequential composition and decomposition of descriptor control systems,” J. Autom. Inform. Sci., Vol. 50, No. 9, 60–75 (2018). https://doi.org/https://doi.org/10.1615/JAutomatInfScien.v50.i9.50.

  2. L. A. Vlasenko, A. G. Rutkas, V. V. Semenets, and A. A. Chikriy, “On the optimal impulse control in descriptor systems,” J. Autom. Inform. Sci., Vol. 51, No. 5, 1–15 (2019).

    Article  Google Scholar 

  3. N. N. Krasovskii, “A convergence–evasion game with stochastic guide,” Doklady Akad. Nauk SSSR, Vol. 237, No. 5, 1020–1023 (1977).

    MathSciNet  Google Scholar 

  4. W. H. Fleming and R.W. Rishel, Deterministic and Stochastic Optimal Control, Springer-Verlag, New York (1975).

    Book  Google Scholar 

  5. K. G. Dziubenko and A. A. Chikrii, “An approach problem for a discrete system with random perturbations,” Cybern. Syst. Analysis, Vol. 46, No. 2, 271–281 (2010). https://doi.org/https://doi.org/10.1007/s10559-010-9204-3.

  6. L. A. Vlasenko and A. G. Rutkas, “Stochastic impulse control of parabolic systems of Sobolev type,” Differential Equations, Vol. 47, No. 10, 1498–1507 (2011). https://doi.org/https://doi.org/10.1134/S0012266111100132.

  7. L. A. Vlasenko and A. G. Rutkas, “Optimal control of a class of random distributed Sobolev type systems with aftereffect,” J. Autom. Inform. Sci., Vol. 45, Iss. 9, 66–76 (2013). https://doi.org/https://doi.org/10.1615/JAutomatInfScien.v45.i9.60.

  8. K. B. Liaskos, I. G. Stratis, and A. A. Pantelous, “Stochastic degenerate Sobolev equations: Well posedness and exact controllability,” Mathematical Methods in the Applied Sciences, Vol. 41, Iss. 3, 1025–1032 (2018).https://doi.org/https://doi.org/10.1002/mma.4077.

  9. V. I. Tikhonov, Statistical Radio Engineering [in Russian], Radio i Svyaz’, Moscow (1982).

    Google Scholar 

  10. E. Kolářová and L. Brančik, “Vector stochastic differential equations used to electrical networks with random parameters,” Intern. J. of Advances in Telecommunications, Electronics, Signals and Systems, Vol. 2, No. 1, 1–8 (2013). http://dx.doi.org/https://doi.org/10.11601/ijates.v2i1.24.

  11. R. Sh. Liptser and A. N. Shiryaev, Statistics of Random Processes [in Russian], Nauka, Moscow (1974).

    Google Scholar 

  12. L. A. Vlasenko, “Existence and uniqueness theorems for an implicit delay differential equation,” Differential Equations, Vol. 36, No. 5, 689–694 (2000). https://doi.org/https://doi.org/10.1007/BF02754227.

  13. A. G. Rutkas and L. A. Vlasenko, “Time-domain descriptor models for circuits with multiconductor transmission lines and lumped elements,” in: Ultrawideband and Ultrashort Impulse Signals, Proc. 5th IEEE Intern. Conf., Sept 6–10, 2010, Sevastopol, Ukraine (2010), pp. 102–104. https://doi.org/https://doi.org/10.1109/UWBUSIS.2010.5609106.

  14. A. A. Chikrii, Conflict-Controlled Processes, Springer Science and Business Media, Dordrecht (2013). https://doi.org/https://doi.org/10.1007/978-94-017-1135-7.

  15. A. A. Chikrii and V. K. Chikrii, “Image structure of multivalued mappings in game problems of motion,” J. Autom. Inform. Sci., Vol. 48, Iss. 3, 20–35 (2016). https://doi.org/https://doi.org/10.1615/JAutomatInfScien.v48.i3.30.

  16. A. G. Rutkas, “Spectral methods for studying degenerate differential-operator equations,” J. Mathem. Sciences, Vol. 144, No. 4, 4246–4263 (2007). https://doi.org/https://doi.org/10.1007/s10958-007-0267-2.

  17. L. A. Vlasenko, A. D. Myshkis, and A. G. Rutkas, “On a class of differential equations of parabolic type with impulsive action,” Differential Equations, Vol. 44, No. 2, 231–240 (2008). https://doi.org/https://doi.org/10.1134/S0012266108020110.

  18. Iu. G. Kryvonos, I. I. Matychyn, and A. A. Chikrii, Dynamic Games with Discontinuous Trajectories [in Russian], Naukova Dumka, Kyiv (2005).

    Google Scholar 

  19. A. A. Chikrii, I. I. Matychyn, and K. A. Chikrii, “Differential games with impulse control,” in: Advances in Dynamic Game Theory. Annals of the International Society of Dynamic Games, Vol. 9, Birkhauser, Boston, (2007), pp. 37–55. https://doi.org/https://doi.org/10.1007/978-0-8176-4553-3_2.

  20. J. L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer-Verlag, Berlin–Heidelberg (1971).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Vlasenko.

Additional information

Translated from Kibernetika i Sistemnyi Analiz, No. 2, March–April, 2020, pp. 42–52.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vlasenko, L.A., Rutkas, A.G., Semenets, V.V. et al. Stochastic Optimal Control of a Descriptor System. Cybern Syst Anal 56, 204–212 (2020). https://doi.org/10.1007/s10559-020-00236-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10559-020-00236-7

Keywords

Navigation