Skip to main content
Log in

Stochastic Optimization Models of Actuarial Mathematics

  • Published:
Cybernetics and Systems Analysis Aims and scope

Abstract

The paper overviews stochastic optimization models of actuarial mathematics and methods for their solution from the point of view of the methodology of multicriteria stochastic programming and optimal control. The evolution of the capital of an insurance company is considered in discrete time. The main random parameters of the models are insurance payouts, i.e., the ratios of paid insurance claims to the corresponding premiums per unit time. Optimization variables are the structure of the insurance portfolio (gross premium structure) and amount of dividends. As efficiency criteria, indicators of the profitability of the insurance business are used, and, as risk indicators the ruin probability and the recourse capital necessary to prevent the ruin are taken. The goal of the optimization is to find Pareto-optimal solutions. Methods for finding these solutions are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Kaas, M. Goovaerts, J. Dhaene, and M. Denuit, Modern Actuarial Risk Theory, Kluwer Academic Publ., Boston (2001).

    MATH  Google Scholar 

  2. N. L. Bowers, H. U. Gerber, J. C. Hickman, D. A. Jones, and C. J. Nesbitt, Actuarial Mathematics, Society of Actuaries, Chicago (1997).

    MATH  Google Scholar 

  3. B. de Finetti, “Su un’impostazione alternativa della teoria collettiva del rischio,” in: Trans. 15th Intern. Congress of Actuaries, Vol. 2, Actuarial Society of America, New York (1957), pp. 433–443.

  4. R. E. Beard, T. Pentikainen, and E. Pesonen, Risk Theory. The Stochastic Basis of Insurance, Chapman and Hall,London–New York (1984).

  5. A. N. Nakonechnyi, “Optimization of risk processes,” Cybern. Syst. Analysis, Vol. 32, No. 5, 641–646 (1996).

    Article  Google Scholar 

  6. G. I. Lyubchenko and A. N. Nakonechnyi, “Optimization methods for compound Poisson risk processes,” Cybern. Syst. Analysis, Vol. 34, No. 2, 230–237 (1998).

    Article  MathSciNet  Google Scholar 

  7. E. Bayraktar and V. Young, “Maximizing utility of consumption subject to a constraint on the probability of lifetime ruin,” Finance and Research Letters, Vol. 5, Iss. 4, 204–212 (2008). DOI: https://doi.org/10.1016/j.frl.2008.08.002.

    Article  Google Scholar 

  8. H. Schmidli, Stochastic Control in Insurance, Springer-Verlag, London (2008).

    MATH  Google Scholar 

  9. B. V. Norkin, “On optimization of insurance portfolio,” Applied Statistics. Actuarial and Financial Mathematics, No. 1–2, 197–203 (2011). URL: https://www.researchgate.net/publication/260869967_On_optimization_of_insurance_portfolio.

  10. B. V. Norkin, “Mathematical models for insurance business optimization,” Cybern. Syst. Analysis, Vol. 47, No. 1, 117–133 (2011).

    Article  MathSciNet  Google Scholar 

  11. A. N. Gromov, “Optimal reinsurance and investment strategy,” Vestn. Mosk. Univer., Ser. 1, Mathematics. Mechanics, Issue 2, 6–12 (2013). URL: https://cyberleninka.ru/article/v/optimalnaya-strategiya-perestrahovaniyai-investirovaniya.

  12. S. Asmussen and H. Albrecher, Ruin Probabilities, World Scientific, London (2010).

    Book  Google Scholar 

  13. V. Yu. Korolev, B. E. Bening, and S. Ya. Shorgin, The Mathematical Fundamentals of Risk Theory [in Russian], Fizmatlit, Moscow (2011).

    Google Scholar 

  14. M. M. Leonenko, Yu. S. Mishura, Ya. M. Parkhomenko, and M. J. Yadrenko, Probability-Theoretic and Statistical Methods in Econometry and Financial Mathematics [in Ukrainian], Informtekhnika, Kyiv (1995).

  15. A. Shapiro, D. Dentcheva, and A. Ruszczynski, Lectures on Stochastic Programming: Modeling and Theory, SIAM, Philadelphia (2009).

    Book  Google Scholar 

  16. Yu. M. Ermoliev, Methods of Stochastic Programming [in Russian], Nauka, Moscow (1976).

    Google Scholar 

  17. Yu. S. Kan and A. N. Kibzun, Stochastic Programming Problems with Probability Criteria [in Russian], Fizmatlit, Moscow (2009).

    MATH  Google Scholar 

  18. D. B. Yudin, Problems and Methods of Stochastic Programming [in Russian], Sov. Radio, Moscow (1979).

  19. W. B. Powell, “Clearing the jungle of stochastic optimization,” in: INFORMS Tutorials in Operations Research, Published online: 27 Oct. (2014), pp. 109–137. DOIhttps://doi.org/10.1287/educ.2014.0128.

    Google Scholar 

  20. B. V. Norkin, Numerical Methods to Solve Stochastic Optimization Problems in Actuarial Mathematics, Author’s Abstracts of Ph.D. Theses, V. M. Glushkov Institute of Cybernetics, NAS of Ukraine (2015).

  21. Forinsurer. URL: https://forinsurer.com/ratings/nonlife.

  22. Y. M. Ermoliev, T. Y. Ermolieva, G. MacDonald, and V. I. Norkin, “Stochastic optimization of insurance portfolios for managing exposure to catastrophic risks,” Ann. Oper. Res., Vol. 99, 207–225 (2000). DOI: https://doi.org/10.1023/A:1019244405392.

    Article  MathSciNet  MATH  Google Scholar 

  23. A. Ruszczynki, “Probabilistic programming with discrete distributions and precedence constrained knapsack polyhedral,” Math. Program., Vol. 93, 195–215 (2002). DOI https://doi.org/10.1007/s10107-002-0337-7.

    Article  MathSciNet  Google Scholar 

  24. V. I. Norkin and S. V. Boiko, “Safety-first portfolio selection,” Cybern. Syst. Analysis, Vol. 48, No. 2, 180–191 (2012).

    Article  MathSciNet  Google Scholar 

  25. B. V. Norkin, “Random search of multicriterion optimum in insurance,” in: Proc. 4th Intern. Scientific Conf. of Students and Young Scientists “Theoretical and Applied Aspects of Cybernetics” (TAAC-2011. Kyiv, Nov. 24–28, 2014), Bukrek, Kyiv (2014), pp. 176–187. URL: https://www.researchgate.net/publication/301764924_Random_Search_of_Multicriterion_Optimum_in_Insurance.

  26. B. V. Norkin, “Necessary and sufficient conditions of existence and uniqueness of solutions to integral equations of actuarial mathematics,” Cybern. Syst. Analysis, Vol. 42, No. 5, 743–749 (2006).

    Article  MathSciNet  Google Scholar 

  27. B. V. Norkin, “Stochastic optimal control of risk processes with Lipschitz payoff functions,” Cybern. Syst. Analysis, Vol. 50, No. 5, 774–787 (2014).

    Article  MathSciNet  Google Scholar 

  28. I. M. Sobol’ and R. B. Statnikov, Choosing Optimal Parameters in Multi-Criteria Problems [in Russian], Drofa, Moscow (2006).

  29. B. V. Norkin, “Sample approximations of multiobjective stochastic optimization problems,” Optimization-online, Nov. (2014). URL: http://www.optimization-online.org/DB_HTML/2014/ll/4655.html.

  30. B. V. Norkin, “Statistical approximation of multicriteria problems of stochastic programming,” Dopov. Nac. Akad. Nauk Ukr., No. 4, 35–41 (2015). DOI https://doi.org/10.15407/dopovidi2015.04.035.

    Article  MathSciNet  MATH  Google Scholar 

  31. B. V. Norkin, “On the approximation of vector optimization problems,” Kibernetika i Vych. Tekhnika, Issue 179, 35–42 (2015). URL: http://dspace.nbuv.gov.ua/bitstream/handle/123456789/86145/03-Norkin.pdf?sequence=1.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. M. Ermoliev.

Additional information

Translated from Kibernetika i Sistemnyi Analiz, No. 1, January–February, 2020, pp. 70–81.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ermoliev, Y.M., Norkin, V.I. & Norkin, B.V. Stochastic Optimization Models of Actuarial Mathematics. Cybern Syst Anal 56, 58–67 (2020). https://doi.org/10.1007/s10559-020-00221-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10559-020-00221-0

Keywords

Navigation