Skip to main content
Log in

Some Nonlocal Boundary-Value Problems for the Biparabolic Evolution Equation and Its Fractional-Differential Analog

  • Published:
Cybernetics and Systems Analysis Aims and scope

Abstract

For the biparabolic partial differential evolution equation and its fractional differential generalization, statements are made and closed-form solutions of some boundary-value problems with nonlocal boundary conditions are obtained. Variants of direct and inverse problem statements are considered. The mathematical formulation of the inverse problem involves the search, together with the solution of the original integro-differential equation of fractional order, of its unknown right-hand side as well, which functionally depends only on the geometric variable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids (Oxford Science Publications), Oxford University Press (1986).

    MATH  Google Scholar 

  2. E. I. Kartashov, Analytical Methods in the Theory of Heat Conduction in Solids [in Russian], Vysshaya Shkola, Moscow (1979).

    Google Scholar 

  3. A. V. Lykov, Heat and Mass Exchange [in Russian], Energiya, Moscow (1978).

    Google Scholar 

  4. C. Cattaneo, “Sur une forme de l’équation de la chaleur éliminant le paradoxe d’une propagation instantanée,” Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences, Vol. 247, No. 4, 431–433 (1958).

    MathSciNet  MATH  Google Scholar 

  5. V. I. Fushchich, A. S. Galitsyn, and A. S. Polubinskii, “A new mathematical model of heat conduction processes,” Ukr. Math. J., Vol. 42, No. 2, 210–216 (1990).

    Article  MathSciNet  Google Scholar 

  6. V. I. Fushchich, “Symmetry and partial solutions to some multidimensional equations of mathematical physics,” Theoretical-Algebraic Methods in Problems of Mathematical Physics [in Russian], Inst. Math. AS UkrSSR (1983), pp. 4–22.

  7. V. M. Bulavatsky, “A biparabolic mathematical model of the filtration consolidation process,” Dopov. Nac. Akad. Nauk. Ukr., No. 8, 13–17 (1997).

    MathSciNet  Google Scholar 

  8. V. M. Bulavatsky, “Mathematical modeling of filtrational consolidation of soil under motion of saline solutions on the basis of biparabolic model,” J. Autom. Inform. Sci., Vol. 35, No. 8, 13–22 (2003).

    Google Scholar 

  9. V. M. Bulavatsky and V. V. Skopetsky, “Generalized mathematical model of the dynamics of consolidation processes with relaxation,” Cybern. Syst. Analysis, Vol. 44, No. 5, 646–654 (2008).

    Article  MathSciNet  Google Scholar 

  10. V. V. Uchaikin, The Method of Fractional Derivatives [in Russian], Artishok, Ulyanovsk (2008).

    Google Scholar 

  11. M. M. Djrbashian, Harmonic Analysis and Boundary-Value Problems in the Complex Domain, Springer Basel AG, Basel (1993).

    Book  Google Scholar 

  12. S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Sci. Publ., Philadelphia (1993).

    MATH  Google Scholar 

  13. A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam (2006).

    MATH  Google Scholar 

  14. I. Podlubny, Fractional Differential Equations, Academic Press, New York (1999).

    MATH  Google Scholar 

  15. F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity, Imperial College Press, London (2010).

    Book  Google Scholar 

  16. M. Caputo, “Models of flux in porous media with memory,” Water Resources Research, Vol. 36, 693–705 (2000).

    Article  Google Scholar 

  17. A. M. Nakhushev, Fractional Calculus and its Application [in Russian], Fizmatlit, Moscow (2003).

    Google Scholar 

  18. R. P. Meilanov, V. D. Beibalaev, and M. R. Shibanova, Applied Aspects of Fractional Calculus, Palmarium Acad. Publ., Saarbrucken (2012).

    Google Scholar 

  19. T. Sandev, R. Metzler, and Z. Tomovski, “Fractional diffusion equation with a generalized Riemann–Liouville time fractional derivative,” J. of Physics A, Vol. 44, 5–52 (2011).

    Article  MathSciNet  Google Scholar 

  20. Z. Tomovski, T. Sandev, R. Metzler, and J. Dubbeldam, “Generalized space–time fractional diffusion equation with composite fractional time derivative,” Physica A, Vol. 391, 2527–2542 (2012).

    Article  MathSciNet  Google Scholar 

  21. K. M. Furati, O. S. Iyiola, and M. Kirane, “An inverse problem for a generalized fractional diffusion,” Applied Mathematics and Computation, Vol. 249, 24–31 (2014).

    Article  MathSciNet  Google Scholar 

  22. V. M. Bulavatsky and V. A. Bogaenko, “Mathematical modelling of the fractional differential dynamics of the relaxation process of convective diffusion under conditions of planed filtration,” Cybern. Syst. Analysis, Vol. 51, No. 6, 886–895 (2015).

    Article  Google Scholar 

  23. V. M. Bulavatsky, “Fractional differential analog of biparabolic evolution equation and some its applications,” Cybern. Syst. Analysis, Vol. 52, No. 5, 737–747 (2016).

    Article  Google Scholar 

  24. N. I. Ionkin, “Solution of one boundary-value problem of the theory of thermal conductivity with the nonclassical boundary condition,” Diff. Uravneniya, Vol. 13, No. 2, 294–304 (1977).

    MathSciNet  Google Scholar 

  25. E. I. Moiseyev, “Solving one nonlocal boundary-value problem by the spectral method,” Diff. Uravneniya, Vol. 35, No. 8, 1094–1100 (1999).

    Google Scholar 

  26. V. M. Bulavatsky, Iu. G. Kryvonos, and V. V. Skopetsky, Nonclassical Mathematical Models of Heat and Mass Transfer Processes [in Ukrainian], Naukova Dumka, Kyiv (2005).

    Google Scholar 

  27. I. A. Kaliev and M. M. Sabitova, “Problems of determining the temperature and density of heat sources from the initial and terminal temperatures,” Sibirskii Zhurnal Industr. Matem., Vol. 12, No. 1 (37), 89–97 (2009).

  28. R. Gorenflo, A. A. Kilbas, F. Mainardi, and S. V. Rogosin, Mittag-Leffler Functions, Related Topics and Applications, Springer-Verlag, Berlin (2014).

    MATH  Google Scholar 

  29. A. A. Kilbas, M. Saigo, and R. K. Saxena, “Generalized Mittag-Leffler function and generalized fractional calculus operators,” Integral Transforms and Special Functions, Vol. 15, No. 1, 31–49 (2004).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Bulavatsky.

Additional information

Translated from Kibernetika i Sistemnyi Analiz, No. 5, September–October, 2019, pp. 106–114.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bulavatsky, V.M. Some Nonlocal Boundary-Value Problems for the Biparabolic Evolution Equation and Its Fractional-Differential Analog. Cybern Syst Anal 55, 796–804 (2019). https://doi.org/10.1007/s10559-019-00190-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10559-019-00190-z

Keywords

Navigation