Skip to main content
Log in

Formalizing Spatial Configuration Optimization Problems with the Use of a Special Function Class

  • Published:
Cybernetics and Systems Analysis Aims and scope

Abstract

An approach to the analysis of spatial configuration optimization problems by generating configuration spaces of geometric objects is proposed. Depending on the choice of generalized variables, various classes of spatial configurations are investigated. A class of functions in the configuration space of geometric objects is introduced, which allows us to propose new and develop available approaches for the formalization of optimization problems for spatial configurations. The problem of placing circular objects in a bounded domain by the criterion of minimization of the total area of their pairwise intersections is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Fasano, “A modeling-based approach for non-standard packing problems,” Optimized Packings with Applications, Vol. 105, 67–85 (2015). https://doi.org/10.1007/978-3-319-18899-7_4.

    Article  MathSciNet  MATH  Google Scholar 

  2. G. Wascher, H. Hausner, and H. Schumann, “An improved typology of cutting and packing problems,” Europ. J. of Oper. Research, Vol. 183, 1109–1130 (2007). https://doi.org/10.1016/j.ejor.2005.12.047.

    Article  MATH  Google Scholar 

  3. G. M. Fadel and M. M. Wiecek, “Packing optimization of free-form objects in engineering design,” Optimized Packings with Applications, Vol. 105, 37–66 (2015).

    Article  MATH  Google Scholar 

  4. Yu. Stoyan, A. Pankratov, and T. Romanova, “Placement problems for irregular objects: Mathematical modeling, optimization and applications,” Optimization Methods and Applications, 521–558 (2017). https://doi.org/10.1007/978-3-319-68640-0_25.

  5. A. Drira, H. Pierreval, and S. Hajri-Gabouj, “Facility layout problems: A survey,” Annual Reviews in Control, Vol. 31, No. 2, 255–267 (2007). https://doi.org/10.1016/j.arcontrol.2007.04.001.

    Article  Google Scholar 

  6. A. Bortfeldt and G. Wascher, “Constraints in container loading: A state-of-the-art review,” Europ. J. of Oper. Research, Vol. 229, No. 1, 1–20 (2013). https://doi.org/10.1016/j.ejor.2012.12.006.

    Article  MathSciNet  MATH  Google Scholar 

  7. Yu. G. Stoyan, V. V. Semkin, and A. M. Chugay, “Optimization of 3D objects layout into a multiply connected domain with account for shortest distances,” Cybern. Syst. Analysis, Vol. 50, No. 3, 374–385 (2014). https://doi.org/10.1007/s10559-014-9626-4.

    Article  MathSciNet  MATH  Google Scholar 

  8. T. Tian, W. Zhu, A. Lim, and L. Wei, “The multiple container loading problem with preference,” Europ. J. of Operational Research, Vol. 248, No. 1, 84–94 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  9. Yu. G. Stoyan and V. M. Patsuk, “Covering a convex 3D polytope by a minimal number of congruent spheres,” Intern. J. of Computer Mathematics, Vol. 91, No. 9, 2010–2020 (2014). https://doi.org/10.1080/00207160.2013.865726.

    Article  MathSciNet  MATH  Google Scholar 

  10. S. V. Yakovlev, “On a class of problems on covering of a bounded set,” Acta Mathematica Hungarica, Vol. 53, No. 3, 253–262 (1989). https://doi.org/10.1007/BF01953365.

    Article  MathSciNet  MATH  Google Scholar 

  11. S. B. Shekhovtsov and S. V. Yakovlev, “Formalization and solution of one class of covering problem in design of control and monitoring systems,” Avtomatika i Telemekhanica, Vol. 50, No. 5, 705–710 (1989). URL: http://mi.mathnet.ru/eng/at6296.

  12. E. M. Kiseleva, L. I. Lozovskaya, and E. V. Timoshenko, “Solution of continuous problems of optimal covering with spheres using optimal set-partition theory,” Cybern. Syst. Analysis, Vol. 45, No. 3, 421–437 (2009). https://doi.org/10.1007/s10559-009-9113-5.

    Article  MATH  Google Scholar 

  13. O. M. Kiseleva, Development of the Optimal Set Partition Theory. Theoretical and Practical Applications [in Ukrainian], Lira, Dnipro (2018).

    Google Scholar 

  14. E. M. Kiseleva and L. S. Koryashkina, Models and Methods to Solve Continuous Optimal Set Partition Problems: Linear, Nonlinear, Dynamic Problems [in Russian], Naukova Dumka, Kyiv (2013).

    Google Scholar 

  15. C. Berge, Principes de combinatoire, Dunod, Paris (1968).

    MATH  Google Scholar 

  16. V. L. Rvachev, Theory of R-Functions and Some of its Applications [in Russian], Naukova Dumka, Kyiv (1982).

    MATH  Google Scholar 

  17. Yu. G. Stoyan and S. V. Yakovlev, Mathematical Models and Optimization Methods of Geometrical Design [in Russian], Naukova Dumka, Kyiv (1986).

    Google Scholar 

  18. Y. G. Stoyan and S. V. Yakovlev, “Configuration space of geometric objects,” Cybern. Syst. Analysis, Vol. 54, No. 5, 716–726 (2018). https://doi.org/10.1007/s10559-018-0073-5.

    Article  MathSciNet  MATH  Google Scholar 

  19. S. V. Yakovlev, “On some classes of spatial configurations of geometric objects and their formalization,” J. of Autom. and Inform. Sci., Vol. 50, No. 9, 38–50 (2018). https://doi.org/10.1615/JAutomatInfScien.v50.i9.30.

    Article  Google Scholar 

  20. Y. Stoyan, M. Gil, J. Terno, T. Romanova, and G. Schithauer, “Φ-function for complex 2D objects,” 4OR Quarterly J. of the Belgian, French and Italian Operations Research Societies, Vol. 2, No. 1, 69–84 (2004).

    MathSciNet  Google Scholar 

  21. G. Scheithauer, Yu. G. Stoyan, and T. Ye. Romanova, “Mathematical modeling of interaction of primary geometric 3D objects,” Cybern. and Syst. Analysis, Vol. 41, No. 3, 332–342 (2005). https://doi.org/10.1007/s10559-005-0067-y.

    Article  MathSciNet  MATH  Google Scholar 

  22. Yu. Stoyan, T. Romanova, A. Pankratov, and A. Chugay, “Optimized object packings using quasi-phi-functions,” Optimized Packings with Applications, Vol. 105, 265–293 (2015). https://doi.org/10.1007/978-3-319-18899-7_13.

    Article  MathSciNet  MATH  Google Scholar 

  23. N. Z. Shor, Methods of Minimization of Nondifferentiable Functions and their Applications [in Russian], Naukova Dumka, Kyiv (1979).

    Google Scholar 

  24. P. I. Stetsyuk, “Shor’s r-algorithms: Theory and practice,” Springer Optimization and its Applications, Vol. 130, 239–250 (2017).

    Article  MATH  Google Scholar 

  25. P. I. Stetsyuk, “Theory and software implementations of Shor’s r-algorithms,” Cybern. Syst. Analysis, Vol. 53, No. 5, 692–703 (2017). https://doi.org/10.1007/s10559-017-9971-1.

    Article  MathSciNet  MATH  Google Scholar 

  26. E. M. Kiseleva and N. Z. Shor, Continuous Problems of Optimal Set Partition: Theory, Algorithms, Applications [in Russian], Naukova Dumka, Kyiv (2005).

    Google Scholar 

  27. E. M. Kiseleva and L. S. Koriashkina, “Theory of continuous optimal set partitioning problems as a universal mathematical formalism for constructing Voronoi diagrams and their generalizations,” Cybern. Syst. Analysis, Vol. 51, No. 3, 325–335 (2015). https://doi.org/10.1007/s10559-015-9725-x.

    Article  MathSciNet  MATH  Google Scholar 

  28. E. M. Kiseleva, O. M. Prytomanova, and S. V. Zhuravel, “Algorithm for solving a continuous problem of optimal partitioning with neurolinguistic identification of functions in target functional,” J. of Autom. and Inform. Sci., Vol 50, No. 3, 102–112 (2018).

    Article  Google Scholar 

  29. Y. Stoyan, T. Romanova, A. Pankratov, A. Kovalenko, and P. Stetsyuk, “Balance layout problems: Mathematical modeling and nonlinear optimization,” Springer Optimization and its Applications, Vol. 114, 369–400 (2016). https://doi.org/10.1007/978-3-319-41508-6_14.

    Article  MATH  Google Scholar 

  30. Yu. G. Stoyan, V. Z. Sokolovskii, and S. V. Yakovlev, “Method of balancing rotating discretely distributed masses,” Energomashinostroenie, No. 2, 4–5 (1982).

  31. Yu. G. Stoyan and V. Z. Sokolovskii, Solving Some Multiextremum Problems by the Decremental Neighborhood Method [in Russian], Naukova Dumka, Kyiv (1980).

    Google Scholar 

  32. V. S. Mikhalevich, “Sequential optimization algorithms and their application,” Cybern. Syst. Analysis, Vol. 1, No. 1, 44–55, No. 2, 87–92 (1965).

  33. S. Yakovlev, O. Kartashov, and K. Korobchynskyi, “The informational analytical technologies of synthesis of optimal spatial configuration,” in: Proc. IEEE 13th Intern. Sci. and Techn. Conf. on Computer Sciences and Information Technologies, CSIT’2018 (2018), pp. 374–377.

  34. S. Yakovlev and O. Kartashov, “System analysis and classification of spatial configurations,” in: Proc. IEEE 1st Intern. Conf. on System Analysis and Intelligent Computing, SAIC’2018 (2018). pp. 1–6. https://doi.org/10.1109/SAIC.2018.8516760.

  35. S. V. Yakovlev, “On the combinatorial structure of problems of optimal placement of geometric objects,” Dopov. Nac. Acad. Nauk Ukr., No. 9, 26–32 (2017). URL: http://nbuv.gov.ua/UJRN/dnanu_2017_9_7.

  36. S. V. Yakovlev, “The method of artificial dilation in problems of optimal packing of geometric objects,” Cybern. Syst. Analysis, Vol. 53, No. 5, 725–731 (2017). https://doi.org/10.1007/s10559-017-9974-y.

    Article  MATH  Google Scholar 

  37. L. Hulianytskyi and I. Riasna, “Formalization and classification of combinatorial optimization problems,” Springer Optimization and Its Applications, Vol. 130, 239–250 (2017). https://doi.org/10.1007/978-3-319-68640-0_11.

    Article  MATH  Google Scholar 

  38. Yu. G. Stoyan, S. V. Yakovlev, and O. S. Pichugina, Euclidean Combinatorial Configurations [in Russian], Konstanta, Kharkiv (2017).

    Google Scholar 

  39. S. Yakovlev, “Convex extensions in combinatorial optimization and their applications,” Springer Optimization and Its Applications, Vol. 130, 567–584 (2017). https://doi.org/10.1007/978-3-319-68640-0_27.

    Article  MATH  Google Scholar 

  40. O. S. Pichugina and S. V. Yakovlev, “Continuous representations and functional extensions in combinatorial optimization,” Cybern. Syst. Analysis, Vol. 52, No. 6, 921–930 (2016). https://doi.org/10.1007/s10559-016-9894-2.

    Article  MathSciNet  MATH  Google Scholar 

  41. S. V. Yakovlev and O. S. Pichugina, “Properties of combinatorial optimization problems over polyhedral-spherical sets,” Cybern. Syst. Analysis, Vol. 54, No. 1, 111–123 (2018). https://doi.org/10.1007/s10559-018-0011-6.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Yakovlev.

Additional information

Translated from Kibernetika i Sistemnyi Analiz, No. 4, July–August, 2019, pp. 71–80.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yakovlev, S.V. Formalizing Spatial Configuration Optimization Problems with the Use of a Special Function Class. Cybern Syst Anal 55, 581–589 (2019). https://doi.org/10.1007/s10559-019-00167-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10559-019-00167-y

Keywords

Navigation