Skip to main content

Advertisement

Log in

Qualitative and Quantitative Analysis of Weak Solutions of Energy-Balance Climate Models

  • SYSTEMS ANALYSIS
  • Published:
Cybernetics and Systems Analysis Aims and scope

Abstract

Qualitative analysis of the solutions behavior for the Budyko–Sellers energy balance climate model, considered on the Riemannian manifold without boundary is carried out. The global existence of the weak solution for the investigated problem with arbitrary initial data from the phase space is proved. Solutions’ properties and regularity are analyzed. The theorems on the existence of global and trajectory attractors for multi-valued semiflow generated by all weak solutions of the problem are proved. The properties of attractors are analyzed. The relationship between attractors and the space of complete trajectories for the problem is established. The character of attraction of solutions to global and trajectory attractors and their structure are investigated. The finite-dimensionality up to a small parameter of the solutions dynamics is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. I. Budyko, “The effects of solar radiation variations on the climate of the Earth,” Tellus, Vol. 21, 611–619 (1969).

    Article  Google Scholar 

  2. W. D. Sellers, “A global climatic model based on the energy balance of the Earth-atmosphere system,” J. Appl. Meteorol., Vol. 8, 392–400 (1969).

    Article  Google Scholar 

  3. H. Díaz and J. I. Díaz, “On a stochastic parabolic PDE arising in climatology,” Rev. R. Acad. Cien., Series A Mat., Vol. 96, 123–128 (2002).

    MathSciNet  MATH  Google Scholar 

  4. J. I. Díaz, J. Hernández, and L. Tello, “On the multiplicity of equilibrium solutions to a nonlinear diffusion equation on a manifold arising in climatology,” J. Math. Anal. Appl., Vol. 216, 593–613 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  5. J. I. Díaz, J. Hernández, and L. Tello, “Some results about multiplicity and bifurcation of stationary solutions of a reaction diffusion climatological model,” Rev. R. Acad. Cien., Series A Mat., Vol. 96, 357–366 (2002).

    MathSciNet  MATH  Google Scholar 

  6. M. O. Gluzman, N. V. Gorban, and P. O. Kasyanov, “Lyapunov type functions for classes of autonomous parabolic feedback control problems and applications,” Applied Mathematics Letters, Vol. 39, 19–21 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  7. M. O. Gluzman, N. V. Gorban, and P. O. Kasyanov, “Lyapunov functions for weak solutions of reaction–diffusion equations with discontinuous interaction functions and its applications,” Nonautonomous Dyn. Syst., Vol. 2, 1–11 (2015).

    MathSciNet  MATH  Google Scholar 

  8. M. O. Gluzman, N. V. Gorban, and P. O. Kasyanov, “Lyapunov functions for differential inclusions and applications in physics, biology, and climatology,” in: V. A. Sadovnichiy and M. Z. Zgurovsky (eds.), Continuous and Distributed Systems II. Series: Studies in Systems, Decision and Control, Vol. 30 (2015), pp. 233–243.

  9. N. V. Gorban, O. V. Khomenko, L. S. Paliichuk, and A. M. Tkachuk, “Long-time behavior of state functions for climate energy balance model,” DCDS-B, Vol. 22, No. 5, 1887–1897 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  10. N. V. Gorban, M. O. Gluzman, P. O. Kasyanov, and A. M. Tkachuk, “Long-time behavior of state functions for Budyko models,” in: V. A. Sadovnichiy and M. Z. Zgurovsky (eds.), Advances in Dynamical Systems and Control, Series: Studies in Systems, Decision and Control, Cham: Springer, Vol. 69 (2016), pp. 351–359.

    Chapter  Google Scholar 

  11. S. Bensid and J. I. Diaz, “On the exact number of monotone solutions of a simplified Budyko climate model and their different stability,” DCDS, Vol. 24, No. 3, 1033–1047 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  12. F. H. Clarke, Optimization and Nonsmooth Analysis, John Wiley & Sons, Inc., New York (1983).

    MATH  Google Scholar 

  13. J. Smoller, Shock Waves and Reaction-Diffusion Equations, Springer, New York (1983).

    Book  MATH  Google Scholar 

  14. T. Aubin, Nonlinear Analysis on Manifolds, Monge-Ampère Equations, Springer, Berlin (1980).

    MATH  Google Scholar 

  15. M. Z. Zgurovsky, P. O. Kasyanov, O. V. Kapustyan, J. Valero, and N. V. Zadoianchuk, Evolution Inclusions and Variation Inequalities for Earth Data Processing. III, Springer, Heidelberg–New York–Dordreht–London (2012).

    Book  MATH  Google Scholar 

  16. P. O. Kasyanov, L. Toscano, and N. V. Zadoianchuk, “Regularity of weak solutions and their attractors for a parabolic feedback control problem,” Set-Valued and Variational Analysis, Vol. 21, No. 2, 271–282 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  17. R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer, New York (1988).

    Book  MATH  Google Scholar 

  18. H. Gajewski, K. Groger, and K. Zacharias, Nichtlineare Operatorleichngen und Operatordifferential-gleichungen, Academie-Verlag, Berlin (1974).

    Google Scholar 

  19. V. V. Chepyzhov and M. I. Vishik, “Trajectory and global attractors for 3D Navier–Stokes system,” Mathematical Notes, Vol. 71, 177–193 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  20. P. O. Kasyanov, L. Toscano, and N. V. Zadoianchuk, “Long-time behavior of solutions for autonomous evolution hemivariational inequality with multidimensional “reaction-displacemen” law,” Abstract and Applied Analysis, Vol. 2012, Article ID 450984 (2012).

  21. M. Z. Zgurovsky, P. O. Kasyanov, and N. V. Zadoianchuk, “Long-time behavior of solutions for quasilinear hyperbolic hemivariational inequalities with application to piezoelectricity problem,” Applied Mathematics Letters, Vol. 25, No. 10, 1569–1574 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  22. N. V. Zadoianchuk and P. O. Kasyanov, “Dynamics of solutions of a class of second-order autonomous evolution inclusions,” Cybern. Syst. Analysis, Vol. 48, No. 3, 414–420 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  23. J. M. Arrieta, A. Rodríguez-Bernal, and J. Valero, “Dynamics of a reaction–diffusion equation with a discontinuous nonlinearity,” Int. J. Bifurcation and Chaos, Vol. 16, 2695–2984 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  24. J. Valero, “Attractors of parabolic equations without uniqueness,” J. of Dynamics and Differential Equations, Vol. 13, No. 4, 711–744 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  25. P. Kalita and G. Lukaszewicz, “Global attractors for multivalued semiflows with weak continuity properties,” Nonlinear Analysis: Theory, Methods & Applications, Vol. 101, 124–143 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  26. P. Kalita and G. Lukaszewicz, “Attractors for Navier–Stokes flows with multivalued and nonmonotone subdifferential boundary conditions,” Nonlinear Analysis: Real World Applications, Vol. 19, 75–88 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  27. N. V. Gorban, O. V. Kapustyan, P. O. Kasyanov, and L. S. Paliichuk, “On global attractors for autonomous damped wave equation with discontinuous nonlinearity,” in: M. Z. Zgurovsky and V. A. Sadovnichiy (eds.), Continuous and Distributed Systems, Series: Solid Mechanics and Its Applications, Vol. 211 (2014), pp. 221–237.

  28. V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff, Leyden (1974).

    MATH  Google Scholar 

  29. J. M. Ball, “Global attractors for damped semilinear wave equations,” DCDS, Vol. 10, 31–52 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  30. M. Z. Zgurovsky, P. O Kasyanov, N. V. Gorban, and L. S. Paliichuk, “Qualitative properties and finite-dimensionality to within a small parameter of weak solutions of the Budyko–Sellers climate model,” Systemni Doslidzh. ta Inform. Tekhnologii, No. 4, 7–18 (2018).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Z. Zgurovsky.

Additional information

Translated from Kibernetika i Sistemnyi Analiz, No. 4, July–August, 2019, pp. 39–49.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zgurovsky, M.Z., Kasyanov, P.O., Gorban, N.V. et al. Qualitative and Quantitative Analysis of Weak Solutions of Energy-Balance Climate Models. Cybern Syst Anal 55, 552–560 (2019). https://doi.org/10.1007/s10559-019-00164-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10559-019-00164-1

Keywords

Navigation