Skip to main content

Advertisement

Log in

Optimization Models Of Anti-Terrorist Protection*

  • Published:
Cybernetics and Systems Analysis Aims and scope

Abstract

The paper gives an overview of a number of mathematical models and problems on planning anti-terrorist and special actions. These are problems of monitoring a territory, protecting critical infrastructure (described by optimization models), interdicting transport and information networks. It is shown that many territory control problems can be reduced to well-known optimization problems on graphs, shortest paths search, and minimal covering on graphs. The problems of protecting critical infrastructure and interdicting networks are reduced to stochastic minimax game problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. D. Wright, M. J. Liberatore, and R. L. Nydick, “A survey of operations research models and applications in homeland security,” Interfaces, Vol. 36, No. 6, 514–529 (2006).

    Article  Google Scholar 

  2. J. W. Herrmann, “Using operations research methods for homeland security problems,” in: J. W. Herrmann (ed.), Handbook of Operations Research for Homeland Security, Intern. Ser. in Operations Research & Management Science, Vol. 183, Springer, New York (2013), pp. 1–24.

  3. O. O. Haivoronskyy, Yu. M. Ermoliev, P. S. Knopov, and V. I. Norkin, “Mathematical modeling of distributed catastrophic and terrorist risks,” Cybern. Syst. Analysis, Vol. 51, No. 1, 85–95 (2015). DOI: https://doi.org/10.1007/s10559-015-9724-y.

    Article  MATH  Google Scholar 

  4. V. I. Norkin, A. A. Gaivoronski, V. A. Zaslavsky, and P. S. Knopov, “Models of the optimal resource allocation for the critical infrastructure protection,” Cybern. Syst. Analysis, Vol. 54, No. 5, 696–706 (2018).

    Article  Google Scholar 

  5. A. V. Eremeev, L. A. Zaozerskaya, and A. A. Kolokolov, “Set covering problem: Complexity, algorithms, and experimental analysis,” Discrete Analysis and Operations Research, Vol. 7, No. 2, 22–46 (2000).

    MATH  Google Scholar 

  6. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms, The MIT Press (2009).

  7. S. Pashko, A. Molyboha, M. Zabarankin, and S. Gorovyy, “Optimal sensor placement for underwater threat detection,” Naval Research Logistics, Vol. 55, No. 7, 684–699 (2008).

    Article  MathSciNet  Google Scholar 

  8. A. Molyboha and M. Zabarankin, “Stochastic optimization of sensor placement for diver detection,” Operations Research, 60(2), 292–312 (2012). DOI: https://doi.org/10.1287/opre.1110.1032.

    Article  MathSciNet  Google Scholar 

  9. S. V. Pashko, “Optimal placement of multi-sensor system for threat detection,” Cybern. Syst. Analysis, Vol. 54, No. 2, 249–257 (2018).

    Article  MathSciNet  Google Scholar 

  10. P. Beraldi and A. Ruszczyński ,“The probabilistic set covering problem,” Operations Research, Vol. 50, No. 6, 956–967 (2002).

    Article  MathSciNet  Google Scholar 

  11. A. Prékopa, Stochastic Programming, Kluwer Acad. Publ., Dordrecht (1995).

  12. A. Ruszczyński, “Probabilistic programming with discrete distributions and precedence constrained knapsack polyhedral,” Math. Program., Vol. 93, 195–215 (2002).

    Article  MathSciNet  Google Scholar 

  13. A. Saxena, V. Goyal, and M. Lejeune, “MIP reformulations of the probabilistic set covering problem,” Math. Program., Vol. 121, 1–31 (2009).

    Article  MathSciNet  Google Scholar 

  14. J. Luedtke, S. Ahmed, and G. Nemhauser, “An integer programming approach for linear programs with probabilistic constraints,” Math. Program., Vol. 122, No. 2, 247–272 (2010).

    Article  MathSciNet  Google Scholar 

  15. A. I. Kibzun, A. V. Naumov, and V. I. Norkin, “On reducing a quantile optimization problem with discrete distribution to a mixed integer programming problem,” Automation and Remote Control, Vol. 74, No. 6, 951–967 (2013).

    Article  MathSciNet  Google Scholar 

  16. J. Luedtke, “A branch-and-cut decomposition algorithm for solving chance-constrained mathematical programs with finite support,” Math. Program., Vol. 146, Iss. 1–2, 219–244 (2014).

    Article  MathSciNet  Google Scholar 

  17. J.-P. Aubin, Nonlinear Analysis and its Economic Applications [Russian translation], Mir, Moscow (1988).

    Google Scholar 

  18. J. M. Danskin, The Theory of Maximin and its Application toWeapon Allocation Problems, Springer-Verlag (1967).

  19. V. V. Fedorov, Numerical Methods of Maximin [in Russian], Nauka, Moscow (1979).

    Google Scholar 

  20. Yu. M. Ermol’ev, Models and Methods of Stochastic Programming [in Russian], Nauka, Moscow (1976).

  21. E. A. Nurminskii, Numerical Methods to Solve Deterministic and Stochastic Minimax Problems [in Russian], Naukova Dumka, Kyiv (1979).

  22. S. Dempe, Foundations of Bilevel Programming, Kluwer Academic Publishers, Dordrecht (2002).

    MATH  Google Scholar 

  23. S. Dempe and A. B. Zemkoho, “The bilevel programming problem: Reformulations, constraint qualications and optimality conditions,” Mathematical Programming, Vol. 138, No. 1, 447–473 (2013).

    Article  MathSciNet  Google Scholar 

  24. Y. Ermoliev and D. von Winterfeldt, “Systemic risks and security management. Managing safety of heterogeneous systems,” in: Y. Ermoliev, M. Makowski, and K. Marti (eds.), Decisions under Uncertainty and Risks, Lecture Notes in Economics and Mathematical Systems, Vol. 658, Springer-Verlag, Berlin–Heidelberg (2012), pp. 19–49.

  25. V. I. Norkin, “About the Piyavskii method to solve the general global optimization problem,” Zhurn. Vych. Mat. Mat. Fiz., Vol. 32, No. 7, 992–1007 (1992).

    MATH  Google Scholar 

  26. V. I. Norkin, and B. O. Onishchenko, “Minorant methods of stochastic global optimization,” Cybern. Syst. Analysis, Vol. 41, No. 2, 203–214 (2005).

    Article  MathSciNet  Google Scholar 

  27. G. Brown, M. Carlyle, J. Salmeryn, and K. Wood, “Defending critical infrastructure,” Interfaces, Vol. 36, No. 6, 530–544 (2006).

    Article  Google Scholar 

  28. K. J. Cormican, D. P. Morton, and R. K. Wood, “Stochastic network interdiction,” Oper. Res., Vol. 46, 184–197 (1998).

    Article  Google Scholar 

  29. V. S. Kirilyuk, “Polyhedral coherent risk measures and optimal portfolios on the reward–risk ratio,” Cybern. Syst. Analysis, Vol. 50, No. 5, 724–740 (2014).

    Article  MathSciNet  Google Scholar 

  30. D. P. Morton, “Stochastic network interdiction,” in: J. J. Cochran (ed.), Wiley Encyclopedia of Operations Research and Management Science, John Wiley & Sons, Hoboken (2010), pp. 1–15.

    Google Scholar 

  31. N. B. Dimitrov and D. P. Morton, “Interdiction models and applications,” in: J. W. Herrmann (ed.), Handbook of Operations Research for Homeland Security, Intern. Ser. in Operations Research & Management Science, Vol. 183, Springer, New York (2013), pp. 73–103.

    Chapter  Google Scholar 

  32. E. Towle and J. Luedtke, “New solution approaches for the maximum-reliability stochastic network interdiction problem,” arXiv: 1708.04261v1 [math.OC] 14 Aug. 2017.

  33. P. I. Stetsyuk, “Theory and software implementations of Shor’s r-algorithms,” Cybern. Syst. Analysis, Vol. 53, No. 5, 692–703 (2017).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Norkin.

Additional information

*The study was supported by the grant CPEA-ST-2016/10002, The Norwegian Centre for International Cooperation in Education (SIU).

Translated from Kibernetika i Sistemnyi Analiz, No. 6, November–December, 2018, pp. 75–88.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Norkin, V.I. Optimization Models Of Anti-Terrorist Protection*. Cybern Syst Anal 54, 918–929 (2018). https://doi.org/10.1007/s10559-018-0094-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10559-018-0094-0

Keywords

Navigation