Skip to main content
Log in

Continuous Representations and Functional Extensions in Combinatorial Optimization

  • Published:
Cybernetics and Systems Analysis Aims and scope


The concepts of functional representation of a set of points of the Euclidean arithmetic space and an extension of functions from the set onto its superset are introduced. Functional representations of sets are related to their extensions. Strict functional representations of the Boolean set, general permutation, and polypermutation sets are derived. The advantages of applying strict representations of Euclidean combinatorial sets to construct functional extensions from them and to solve combinatorial problems are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  1. Yu. G. Stoyan, Some Properties of Special Combinatorial Sets [in Russian], AN UkrRSR, Inst. Probl. Mashinostr., Kharkiv (1980).

    Google Scholar 

  2. L. F. Gulyanitskii and I. V. Sergienko, “Metaheuristic downhill simplex method in combinatorial optimization,” Cybern. Syst. Analysis, 43, No. 6, 822–829 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  3. I. V. Sergienko, L. F. Hulianitskyi, and S. I. Sirenko, “Classification of applied methods of combinatorial optimization,” Cybern. Syst. Analysis, 45, No. 5, 732–741 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  4. Yu. G. Stoyan and S. V. Yakovlev, Mathematical Models and Optimization Methods of Geometrical Design [in Russian], Naukova Dumka, Kyiv (1986).

    Google Scholar 

  5. Yu. G. Stoyan and O. O. Iemets, Theory and Methods of Euclidean Combinatorial Optimization [in Ukrainian], Inst. Syst. Dosl. Osvity, Kyiv (1993).

    Google Scholar 

  6. S. V. Yakovlev, N. I. Gil’, V. M. Komyak, and I. V. Aristova, Elements of the Theory of Geometrical Design [in Russian], Naukova Dumka, Kyiv (1995).

    Google Scholar 

  7. V. A. Emelichev, M. M. Kovalev, and M. K. Kravtsov, Polyhedra, Graphs, Optimization (Combinatorial Theory of Polyhedra) [in Russian], Nauka. Gl. Red. Fiz.-Mat. Literatury, Moscow (1981).

    Google Scholar 

  8. M. L. Balinski and A. J. Hoffman, Polyhedral Combinatorics: Dedicated to the Memory of D.R. Fulkerson, Elsevier Science Ltd, New York (1978).

  9. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization. Algorithms and Complexity, Dover Publ. (1998).

  10. I. V. Grebennik and A. S. Lytvynenko, “Generating combinatorial sets with given properties,” Cybern. Syst. Analysis, 48, No. 6, 890–898 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  11. O. O. Iemets and S. I. Nedobachii, “General permutational polyhedron: Irreducible system of linear constraints and equations of all hyper-edges,” Naukovi Visti NTUU “KPI,” No. 1, 100–106 (1998).

  12. O. S. Pichugina, “Methods and algorithms to solve some optimization problems on sets of combinations and arrangements,” Author’s Abstracts of PhD Theses, Kharkiv (1996).

  13. S. V. Yakovlev, “Theory of convex extensions of functions on vertices of convex polyhedra,” Zhurn. Vych. Mat. Mat. Fiz., 34, No. 7, 1112–1119 (1994).

    Google Scholar 

  14. Yu. G. Stoyan and S. V. Yakovlev, “Construction of convex and concave functions on a permutation polyhedron,” DAN UkrSSR, Ser. A, No. 5, 66–68 (1988).

  15. V. V. Gritsik, O. M. Kiseleva, S. V. Yakovlev, P. I. Stetsyuk, et al., “Mathematical optimization methods and intelligent computer technologies to model complex processes and systems with regard for spatial forms of objects,” Inst. Problem Iskusstv. Intellekta, NAN Ukr., Nauka i Osvita, Donetsk (2012).

    Google Scholar 

  16. Yu. G. Stoyan, S. V. Yakovlev, O. A. Emets, and O. A. Valuiskaya, “Construction of convex continuations for functions defined on a hypersphere,” Cybern. Syst. Analysis, 34, No. 2, 176–184 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  17. O. A. Valuiskaya, O. S. Pichugina, and S. V. Yakovlev, “Convex extensions of polynomials on combinatorial sets and their applications,” Radioelektronika i Informatika, No. 2, 121–129 (2001).

  18. O. A. Valuiskaya, O. A. Emets, and N. G. Romanova, “Convex extension of polynomials defined on polypermutations by the modified Stoyan–Yakovlev method,” Zhurn. Vych. Mat. Mat. Fiz., 42, No. 4, 591–596 (2002).

    MathSciNet  MATH  Google Scholar 

  19. O. S. Pichugina, “Convex extension of cubic polynomials on permutations and its application to solve practical optimization problems,” Matem. Ta Komp. Model., Ser. Fiz.-Mat. Nauky, I. Ogienko National University, Kam’yanets’-Podil’s’kyi, 4, 176–189 (2010).

  20. Yu.G. Stoyan, S. V. Yakovlev, and O. V. Parshin, “Quadratic optimization on combinatorial sets in R n,” Cybern. Syst. Analysis, 27, No. 4, 561–567 (1991).

    Article  MathSciNet  Google Scholar 

  21. S. V. Yakovlev and I. V. Grebennik, “Some classes of optimization problems on the set of arrangements and their properties,” Izv. Vuzov. Matematika, No. 11, 74–86 (1991).

  22. S. V. Yakovlev and I. V. Grebennik, “Localization of solutions of some problems of nonlinear integer optimization,” Cybern. Syst. Analysis, 29, No. 5, 727–734 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  23. O. O. Iemets, O. O. Valuiska, and O. S. Pichugina, “On nonlinear and parametric optimization on combinatorial sets,” Visnyk L’vivs’kogo Univer., Sek. Prykl. Matem. Inform., No. 4, 94–101 (2002).

  24. O. S. Pichugina and S. V. Yakovlev, “The polyhedral–spherical approach to solving some classes of combinatorial problems,” in: Trans. 6th Intern. School–Seminar “Theory of Decision Making,” Uzhgorod (2012), pp. 152–153.

  25. Yu. G. Stoyan, O. O. Iemets, and E. M. Iemets, Optimization on Polyarrangements: Theory and Methods, PUSKU, Poltava (2005).

    Google Scholar 

  26. O. O. Iemets and L. M. Kolechkina, Combinatorial Optimization Problems with Linear Fractional Functions [in Ukrainian], Naukova Dumka, Kyiv (2005).

    Google Scholar 

  27. N. V. Semenova and L. M. Kolechkina, Vektor Problems of Discrete Optimization on Combinatorial Sets: Methods of Their Analysis and Solution [in Ukrainian], Naukova Dumka, Kyiv (2009).

    MATH  Google Scholar 

  28. D. P. Bertsekas, Nonlinear Programming, Athena Scientific, Belmont (1995).

    MATH  Google Scholar 

  29. G. Kochenberger, J.-K. Hao, F. Glover, M. Lewis, Z. Lu, H. Wang, and Y. Wang, “The unconstrained binary quadratic programming problem: A survey,” J. of Combinatorial Optimization, 1, 58–81 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  30. F. S. Hillier, G. Appa, L. Pitsoulis, H. P. Williams, P. M. Pardalos, O. A. Prokopyev, and S. Busygin, “Continuous approaches for solving discrete optimization problems,” Handbook on Modelling for Discrete Optimization (2006), pp. 1–39.

  31. C. Helmberg and F. Rendl, “Solving quadratic (0, 1)-problems by semidefinite programs and cutting planes,” Mathematical Programming, 82, No. 3, 291–315 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  32. W. Murray and K.-M. Ng, “An algorithm for nonlinear optimization problems with binary variables,” Computational Optimization and Applications, 47, No. 2, 257–288 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  33. P. I. Stetsyuk, “Functionally redundant constraints for Boolean quadratic-type optimization problems,” Cybern. Syst. Analysis, 41, No. 6, 932–935 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  34. A. Postnikov, “Permutohedra, associahedra, and beyond,” IMRN: International Mathematics Research Notices, Issue 6, 1026–1106 (2009).

  35. O. S. Pichugina and S. V. Yakovlev, “Functional–analytical representations of the general permutation set,” Vostochno-Evrop. Zhurn. Pered. Tekhnol., 4, No. 1, 27–38 (2016).

    Google Scholar 

  36. J. Dahl, “Convex problems in signal processing and communications,” Ph.D. Thesis, Aalbort University (2003).

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to O. S. Pichugina.

Additional information

Translated from Kibernetika i Sistemnyi Analiz, No. 6, November–December, 2016, pp. 102–113.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pichugina, O.S., Yakovlev, S.V. Continuous Representations and Functional Extensions in Combinatorial Optimization. Cybern Syst Anal 52, 921–930 (2016).

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: