Cybernetics and Systems Analysis

, Volume 51, Issue 4, pp 650–656 | Cite as

Asymptotic Properties of a Stochastic Diffusion Transfer Process with an Equilibrium Point of a Quality Criterion

Article
  • 30 Downloads

Abstract

Weak convergence conditions are obtained for a diffusion transfer process with Markov switchings and a control with an equilibrium point of quality criterion functions. A procedure is constructed for the stochastic approximation of such a point in a scheme of series.

Keywords

stochastic diffusion equation generator on a Banach space Markov process stochastic approximation procedure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. I. Gikhman and A. V. Skorokhod, Controlled Random Processes [in Russian], Naukova Dumka, Kiev (1977).Google Scholar
  2. 2.
    J. Jacod and A. N. Shiryaev, Limit theorems for Random Processes [Russian translation], Vol. 1, Fizmatgiz, Moscow (1994).Google Scholar
  3. 3.
    M. B. Nevelson and R. Z. Khasminskii, Stochastic Approximation and Recursive Estimation [in Russian], Nauka, Moscow (1972).Google Scholar
  4. 4.
    V. B. Kolmanovskii, “Problems of optimal estimation,” Soros Educational Journal, No. 11, 122–127 (1999).Google Scholar
  5. 5.
    A. V. Skorokhod, Asymptotic Methods in the Theory of Stochastic Differential Equations [in Russian], Naukova Dumka, Kiev (1987).Google Scholar
  6. 6.
    V. S. Korolyuk and N. Limnios, Stochastic Systems in Merging Phase Space, World Scientific, London–Singapore-Hong Kong (2005).CrossRefGoogle Scholar
  7. 7.
    V. S. Korolyuk, Stochastic Models of Systems [in Ukrainian], Naukova Dumka, Kyiv (1989).Google Scholar
  8. 8.
    U. T. Khimka and Ya. M. Chabanyuk, “A difference stochastic optimization procedure with impulse perturbation,” Cybernetics and Systems Analysis, 49, No. 3, 768–773 (2013).Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Kamianets-Podilskyi Ivan Ohienko National UniversityKamianets-PodilskyiUkraine

Personalised recommendations