Advertisement

Cybernetics and Systems Analysis

, Volume 51, Issue 4, pp 556–565 | Cite as

Balance Layout Problem for 3D-Objects: Mathematical Model and Solution Methods

  • A. A. Kovalenko
  • T. E. Romanova
  • P. I. Stetsyuk
Article

Abstract

The paper introduces a general mathematical model of the optimal layout of 3D-objects (full-spheres, right circular cylinders, right regular prisms, and right rectangular parallelepipeds) in a container (straight circular cylinder, paraboloid of revolution, truncated circular cone) with circular racks. The model takes into account the minimum and maximum admissible distances between objects as well as the behavior constraints of the mechanical system (equilibrium, moments of inertia, and stability constraints). We propose solution methods based on Shor’s r-algorithm, multistart algorithm, and accelerated search of terminal vertices of the decision tree.

Keywords

balance layout problem phi-function quasi phi-function admissible distances behavior constraints nonlinear programming Shor’s r-algorithm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Fasano and J. D. Pintér (eds.), Modeling and Optimization in Space Engineering, Springer Optimization and its Applications, 73 (2013).Google Scholar
  2. 2.
    C. Che, Y. Wang, and H. Teng, “Test problems for quasi-satellite packing: Cylinders packing with behavior constraints and all the optimal solutions known,” in: Optimization Online (2008), http://www.optimization-online.org/DB_HTML/2008/09/2093.html.
  3. 3.
    K. Lei, “Constrained layout optimization based on adaptive particle swarm optimizer,” C. Zhihua, L. Zhenhua, K. Zhuo, and L. Yong (eds.), Advances in Computation and Intelligence, No. 1, 434–442 (2009).Google Scholar
  4. 4.
    Z. Sun and H. Teng, “Optimal layout design of a satellite module,” Engineering Optimization 35, No. 5, 513–530 (2003).CrossRefGoogle Scholar
  5. 5.
    B. Chazelle, H. Edelsbrunner, and L. J. Guibas, “The complexity of cutting complexes,” Discrete & Computational Geometry, 4, No. 2, 139–181 (1989).MATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    N. Z. Shor, Nondifferentiable Optimization and Polynomial Problems, Kluwer Acad. Publ., Boston–Dordrecht–London (1998).Google Scholar
  7. 7.
    N. Z. Shor and P. I. Stetsyuk, “Modified r-algorithm to find the global minimum of polynomial functions,” Cybern. Syst. Analysis, 33, No. 4, 482–497 (1997).MATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    A. Wachter and L. T. Biegler, “On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming,” Mathematical Programming, 106, No. 1, 25–57 (2006).MathSciNetCrossRefGoogle Scholar
  9. 9.
    N. Chernov, Yu. Stoyan, T. Romanova, and A. Pankratov, “Phi-functions for 2D objects formed by line segments and circular arcs,” Advances in Oper. Research, Article ID 346358, doi: 10.1155/2012/346358 (2012).
  10. 10.
    N. Chernov, Yu. Stoyan, and T. Romanova, “Mathematical model and efficient algorithms for object packing problem,” Computational Geometry: Theory and Applications, 43, No. 5, 533–553 (2010).MathSciNetCrossRefGoogle Scholar
  11. 11.
    Yu. G. Stoyan, A. V. Pankratov, T. E. Romanova, and N. I. Chernov, “Quasi phi-functions for mathematical modeling of ratios of geometric objects,” Dop. NAN Ukrainy, No. 9, 53–57 (2014).Google Scholar
  12. 12.
    T. E. Romanova and A. A. Kovalenko, “Phi-functions to model constraints of inclusions in balance layout optimization problems,” Systemy Obrobky Informatsii, Issue 1, 128–133 (2014).Google Scholar
  13. 13.
    Yu. Stoyan and T. Romanova, “Mathematical models of placement optimization: Two- and three-dimensional problems and applications,” in: G. Fasano and J. D. Pint_r (eds.), Modeling and Optimization in Space Engineering, Ser. Springer Optimization and its Applications, 73, 363–388 (2013).Google Scholar
  14. 14.
    A. A. Kovalenko, A. V. Pankratov, T. E. Romanova, and P. I. Stetsyuk, “Package of circular cylinders into a cylindrical container taking into account special constraints of system behavior,” Zh. Obchysl. ta Prykl. Matem., No. 1(111), 126–134 (2013).Google Scholar
  15. 15.
    J. Bennell, G. Scheithauer, Y. Stoyan, T. Romanova, and A. Pankratov, “Optimal clustering of a pair of irregular objects,” J. of Global Optimization, 61, No. 3, 497–524 (2015).MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • A. A. Kovalenko
    • 1
  • T. E. Romanova
    • 1
  • P. I. Stetsyuk
    • 2
  1. 1.A. N. Podgorny Institute for Mechanical Engineering ProblemsNational Academy of Sciences of UkraineKharkovUkraine
  2. 2.V. M. Glushkov Institute of CyberneticsNational Academy of Sciences of UkraineKharkovUkraine

Personalised recommendations