Skip to main content
Log in

Algorithms for Parallelizing a Mathematical Model of Forest Fires on Supercomputers and Theoretical Estimates for the Efficiency of Parallel Programs

  • Published:
Cybernetics and Systems Analysis Aims and scope

Abstract

The author develops algorithms of parallel implementation of a mathematical model of forest fires to model processes of their occurrence, development, and propagation taking into account physical and chemical processes. Approaches to parallel implementation and schemes of decomposition of solution domains for two-dimensional cases are proposed. Coarse-grained parallelization methods are proposed to be used in the SPMD model of calculations. Formulas are given that make it possible to theoretically estimate the efficiency of parallel programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. M. Grishin, Mathematical Modeling of Forest Fires and New Methods for Fighting Them [in Russian], Science, Novosibirsk (1992).

    Google Scholar 

  2. A. M. Grishin, Physics of Forest Fires [in Russian], Publ. House of the Tomsk State Univ., Tomsk (1994).

    Google Scholar 

  3. Mathematical Modeling of Forest Fires and New Methods of Fighting Them [in Russian], Publ. House of the Tomsk State Univ., Tomsk (1997).

  4. A. M. Grishin, “A general mathematical model of forest fires and its application to the protection and safeguarding of forests,” in: Conjugate Problems of Mechanics and Ecology: Selected Reports of Intern. Conf., Publ. House of the Tomsk State Univ., Tomsk (2000), pp. 88–137.

  5. A. M. Grishin, Modeling and Prediction of Catastrophes [in Russian], Publ. House of the Tomsk State Univ., Tomsk (2002).

    Google Scholar 

  6. J. Jarratano and G. Riley, Expert Systems: Principles and Programming [Russian translation], 4th Edition, Williams, Moscow (2007).

    Google Scholar 

  7. A. V. Bogdanov, V. V. Korkhov, V. V. Mareev, and E. N. Stankova, Architectures and Topologies of Multiprocessor Computing Systems: A Textbook [in Russian], The Internet University of Information Technologies INTUIT.RU, Moscow (2004).

    Google Scholar 

  8. V. A. Vshivkov, M. A. Kraeva, and V. E. Malyshkin, “Parallel implementations of the particle-in-cell method,” Programming, No. 2, 39–51 (1997).

  9. O. L. Bandman, “Fine-grain parallelism in computer engineering,” Programming, No. 4, 5–20 (2001).

  10. V. V. Falfushinsky, “Parallel processing of multicomponent seismic data.” Cybernetics and Systems Analysis, 47, No. 2, 330–334 (2011).

    Article  Google Scholar 

  11. P. I. Andon, A. Yu. Doroshenko, and K. A. Zhereb, “Programming high-performance parallel computations: Formal models and graphics processing units,” Cybernetics and Systems Analysis, 47, No. 4, 659–668 (2011).

    Article  Google Scholar 

  12. I. V. Sergienko, I. N. Molchanov, and A. N. Khimich, “Intelligent technologies of high-performance computing,” Cybernetics and Systems Analysis, 46, No. 5, 833–844 (2010).

    Article  MATH  Google Scholar 

  13. M. M. Glybovets, S. S. Gorohovskiy, and M. S. Stukalo, “Extension of Scala language by distributed and parallel computing tools with Linda coordination system,” Cybernetics and Systems Analysis, 46, No. 4, 624–629 (2010).

    Article  Google Scholar 

  14. G. Sanjuan, C. Brun, T. Margalef, and A. Cortes, “Wind field uncertainty in forest fire propagation prediction,” Procedia Computer Science, 29, 1535–1545 (2014).

    Article  Google Scholar 

  15. J. M. Forthofer, K. Shannon, and B. W. Butler, “Simulating diurnally driven slope winds with WindNinja,” in: Proc. 8th Symp. on Fire and Forest Meteorological Society, Kalispell, Montana (2009).

  16. J. M. Forthofer, K. Shannon, and B. W. Butler, “Initialization of high resolution surface wind simulations using National Weather Service (NWS) gridded data,” in: Proc. 3rd Fire Behavior and Fuels Conference, Washington (2010), p. 5.

  17. M. A. Finney, “FARSITE, Fire area simulator-model development and evaluation,” Res. Pap. RMRS-RP-4, Ogden, UT: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station (1998).

  18. C. Brun, T. Artes, T. Margafel, and A. Cortes, “Coupling wind dynamics into DDDAS forest fire propagation prediction system,” Procedia Computer Science, 9, 1110–1118 (2012).

    Article  Google Scholar 

  19. R. C. Rothermel, “A mathematical model for predicting fire spread in wildland fuels,” USDA For. Serv. Res. Paper INT-115, Washington, DC (1972).

  20. Sero-Guillaume, S. Ramezani, J. Margerit, and D. Calogine, “On large scale forest fires propagation models,” International Journal of Thermal Sciences, 47, 680–694 (2008).

    Article  Google Scholar 

  21. K. Kalabokidis, N. Athanasis, F. Gagliardi, F. Karayiannis, P. Palaiologou, S. Parastatidis, and Ch. Vasilakos, “Virtual fire: A web-based GIS platform for forest fire control,” Ecological Informatics, 16, 62–69 (2013).

    Article  Google Scholar 

  22. P. Palaiologou, K. Kalabokidis, and P. Kyriakidis, “Forest mapping by geoinformatics for landscape fire behaviour modeling in coastal forests,” International Journal of Remote Sensing, 34, 4466–4490 (2013).

    Article  Google Scholar 

  23. D. Morvan, “Numerical study of the effect of fuel moisture content (FMC) upon the propagation of a surface fire on a flat terrain,” Fire Safety Journal, 58, 121–131 (2013)

    Article  Google Scholar 

  24. J. Glasa and L. Halada, “On elliptic model for forest fire spread modeling and simulation,” Mathematics and Computers in Simulation, 78, 76–88 (2008).

    Article  MATH  MathSciNet  Google Scholar 

  25. A. Hernández Encinas, L. Hernández Encinas, S. Hoya White, A. Martín del Rey., and G. Rodríguez Sánchez, “Simulation of forest fire front using cellular automata,” Advances in Engineering Software, 38, No. 6, 372–378 (2007).

    Article  MATH  Google Scholar 

  26. I. Karafyllidis and A. Thanailakis, “A model for predicting forest fire spreading using cellular automata,” Ecological modeling, 99, 87–97 (1997).

    Article  Google Scholar 

  27. T. Artes, A. Cencerrado, A. Cortes, and T. Margafel, “Relieving the effect of uncertainty in forest fire spread prediction by hybrid MPI-OpenMP parallel strategies,” Procedia Computer Science, 18, 2278–2287 (2013).

    Article  Google Scholar 

  28. F. A. Sousa, R. J. N. dos Reis, and J. C. F. Pereira, “Simulation of surface fire fronts using fireLib and GPUs,” Environmental modeling & Software, 38, 167–177 (2012).

    Article  Google Scholar 

  29. A. M. Grishin and N. V. Baranovskij, “Comparative analysis of simple models of drying of the forest combustibles, including the data of experiments and natural observations,” Journal of Engineering Physics and Thermophysics, 76, No. 5, 166–169 (2003).

    Google Scholar 

  30. G. V. Kuznetsov and N. V. Baranovskiy, “Focused Sun’s rays and forest fire danger: New concept,” in: Proc. SPIE (2013), Paper 889011, doi:10.1117/12.2033929.

  31. A. M. Grishin, V. N. Bertsun, and V. I. Zinchenko, Iterative Interpolation Method and Its Applications [in Russian], Publ. House of the Tomsk State Univ., Tomsk (1981).

    Google Scholar 

  32. A. A. Samarskii and P. N. Vabishchevich, Additive Schemes for Problems of Mathematical Physics [in Russian], Nauka, Moscow (2001).

    Google Scholar 

  33. V. M. Kovenya, G. A. Tarnavskii, and S. G. Chernyi, The Use of the Splitting Method in Aerodynamics Problems [in Russian], Nauka, Novosibirsk (1990).

    Google Scholar 

  34. D. E. Khmelnov, “Improved algorithms for solving difference and q-difference equations,” Programming, No. 2, 70–78 (2000).

  35. A. A. Samarskii and P. N. Vabishchevich, Computational Heat Transfer [in Russian], Editorial URSS, Moscow (2003).

    Google Scholar 

  36. K. Ngiamsoongnirn, E. Juntasaro, V. Juntasaro, and P. Uthayopas, “A parallel semi-coarsening multigrid algorithm for solving the Reynolds-averaged Navier–Stokes equations,” in: Proc. Intern. Conf. HPCAsia-04; IEEE Computer Society (2004), pp. 258–266.

  37. A. Clematis, D. D’Agostino, and V. Gianuzzi, “Load balancing and computing strategies in pipeline optimization for parallel visualization of 3D irregular meshes,” EuroPVM/MPI; Lecture Notes in Computer Science, 3666, 457–466 (2005).

    Google Scholar 

  38. V. D. Korneyev, Parallel Programming in MPI [in Russian], Publ. House SB RAS, Novosibirsk (2000).

    Google Scholar 

  39. V. P. Il’in, “Strategies of parallelization in mathematical modeling,” Programming, No. 1, 41–46 (1999).

  40. A. I. Avetisyan, S. S. Gaisaryan, and O. I. Samovarov, “Possibilities of optimal execution of parallel programs containing simple and iterated loops on heterogeneous parallel computational systems with distributed memory,” Programming, No. 1, 38–54 (2002).

  41. N. V. Baranovskiy, “Landscape parallelization and of forest fire danger prediction,” Siberian Journal of Numerical Mathematics, 10, No. 2, 141–152 (2007).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Baranovskiy.

Additional information

Translated from Kibernetika i Sistemnyi Analiz, No. 3, pp. 167–177, May–June, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baranovskiy, N.V. Algorithms for Parallelizing a Mathematical Model of Forest Fires on Supercomputers and Theoretical Estimates for the Efficiency of Parallel Programs. Cybern Syst Anal 51, 471–480 (2015). https://doi.org/10.1007/s10559-015-9738-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10559-015-9738-5

Keywords

Navigation