Skip to main content
Log in

Stochastic Optimal Control of Risk Processes with Lipschitz Payoff Functions

  • Published:
Cybernetics and Systems Analysis Aims and scope

Abstract

This paper studies the stochastic optimal control problem of finding optimal dividend policies of an insurance company in discrete time with the use of general Lipschitz payoff functions involving indicators of profitability and risk. To construct positional optimal controls and to evaluate the performance indicators, the dynamic programming method is validated. The convergence rate of the successive approximation method in finding generally unbounded Bellman functions is estimated. The Pareto-optimal set of the problem is numerically approximated by so-called barrier-proportional control strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. de Finetti, “Su un’ impostazione alternativa della teoria collettiva del rischio,” in: Trans. XV-th Intern. Congress of Actuaries, 2, 433–443 (1957).

  2. K. Borch, “The theory of risk (with discussion),” J. Roy. Statist. Soc. Ser. B, 29, 432–467 (1967).

    MathSciNet  MATH  Google Scholar 

  3. H. U. Gerber, An Introduction to Mathematical Risk Theory, Huebner Foundation Monographs, Philadelphia (1979).

  4. H. Schmidli, Stochastic Control in Insurance, Springer, London (2008).

    MATH  Google Scholar 

  5. B. Avanzi, “Strategies for dividend distribution: A review,” North Amer. Actuar. J., 13, No. 2, 217–251 (2009).

    Article  MathSciNet  Google Scholar 

  6. H. Albrecher and S. Thonhauser, “Optimality results for dividend problems in insurance,” Rev. R. Acad. Cien. Ser. A. Math., 103, No. 2, 295–320 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  7. S. Asmussen and H. Albrecher, Ruin Probabilities, 2nd Edition, World Sci., London (2010).

    MATH  Google Scholar 

  8. S. E. Shreve, J. P. Lehoczky, and D. P. Gaver, “Optimal consumption for general diffusions with absorbing and deflecting barriers,” SIAM J. Control and Optim., 22, No. 1, 55–75 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  9. A. B. Piunovsky, Optimal Control of Random Sequences in Problems with Constraints [in Russian], Nauchn. Kniga, Moscow (1996).

    Google Scholar 

  10. A. B. Piunovsky, Optimal Control of Random Sequences in Problems with Constraints, Springer, Dordrecht (1997).

    Book  Google Scholar 

  11. S. P. Sethi, Optimal Consumption and Investment with Bankruptcy, Kluwer, Boston–Dordrecht–London (1997).

    Book  Google Scholar 

  12. J. Paulsen, “Optimal dividend payouts for diffusions with solvency constraints,” Finance Stoch., 7, No. 4, 457–473 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  13. C. Hipp, “Optimal dividend payment under a ruin constraint: Discrete time and state space,” Blatter der DGVFM (Blatter der Deutschen Gesellschaft fur Versicherungs-und Finanzmathematik e.V.), 26, No. 2, 255–264 (2003).

    Google Scholar 

  14. D. C. M. Dickson and H. R. Waters, “Some optimal dividend problems,” ASTIN Bulletin, 34, No. 1, 49–74 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  15. H. U. Gerber, E. S. W. Shiu, and N. Smith, “Maximizing dividends without bankruptcy,” ASTIN Bull., 36, No. 1, 5–23 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  16. S. Thonhauser and H. Albrecher, “Dividend maximization under consideration of the time value of ruin,” Insurance: Mathematics and Economics, 41, 163–184 (2007).

    MathSciNet  MATH  Google Scholar 

  17. E. Bayraktar and V. Young, “Maximizing utility of consumption subject to a constraint on the probability of lifetime ruin,” Finance and Research Letters, 5, No. 4, 204–212 (2008).

    Article  Google Scholar 

  18. B. V. Norkin, “On numerical solution of the stochastic optimal control problem for the dividend policy of an insurance company,” Computer Mathematics, No. 1, 131–139 (2014).

  19. B. V. Norkin, “On stochastic optimal control of risk processes in discrete time,” Theory of Optimal Solutions, No. 1, 55–62 (2014).

  20. B. V. Norkin, “On stochastic optimal control of discrete-time risk processes,” Problems of Control and Informatics, No. 5, 108–121 (2014).

  21. B. V. Norkin, “Necessary and sufficient conditions of existence and uniqueness of solutions to integral equations of actuarial mathematics,” Cybernetics and Systems Analysis, 42, No. 5, 743–749 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  22. B. V. Norkin, “On the solution of the basic integral equation of actuarial mathematics by the successive approximation method,” Ukrainian Mathematical Journal, 59, No, 12, 112–127 (2007).

    Article  MathSciNet  Google Scholar 

  23. B. V. Norkin, “Systems simulation analysis and optimization of insurance business,” Cybernetics and Systems Analysis,” 50, No. 2, 260–270 (2014).

    Article  Google Scholar 

  24. H. U. Gerber and E. S. W. Shiu, “On the time value of ruin,” North Amer. Actuar. J., 2, 48–78 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  25. Y. Ermoliev, T. Ermolieva, G. Fischer, et al., “Discounting, catastrophic risks management and vulnerability modeling,” Math. and Comput. in Simul., 79, 917–924 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  26. H. U. Gerber, “Entscheidungskriterien fur den zusammengesetzten Poisso–Prozess,” Schweiz. Verein. Versicherungsmath. Mitt., 69, 185–228 (1969).

    MATH  Google Scholar 

  27. D. P. Bertsekas and S. E. Shreve, Stochastic Optimal Control: The Discrete-Time Case, Athena Sci., Belmont (Mass.) (1996).

  28. J. P. Aubin and I. Ekeland, Applied Nonlinear Analysis [Russian translation], Mir, Moscow (1988).

    Google Scholar 

  29. A. N. Shiryaev, Probability [in Russian], Nauka, Moscow (1980).

    Google Scholar 

  30. R. T. Rockafellar and R. J.-B. Wets, Variational Analysis, Springer, Berlin (1998).

    Book  MATH  Google Scholar 

  31. H. Gerber, “The dilemma between dividends and safety and a generalization of the Lundberg–Cramer formulas,” Scand. Actuar. J., No. 1, 46–57 (1974).

  32. H. Albrecher and R. Kainhofer, “Risk theory with a nonlinear dividend barrier,” Computing, 68, No. 4, 289–311 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  33. K. J. Kushner and P. Dupuis, Numerical Methods for Stochastic Control Problems in Continuous Time, Springer, New York (1992).

    Book  MATH  Google Scholar 

  34. B. V. Norkin, “On the identification of models of dynamic financial analysis of an insurance company,” Computer Mathematics, No. 2, 24–33 (2013).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. V. Norkin.

Additional information

Translated from Kibernetika i Sistemnyi Analiz, No. 5, pp. 139–154, September–October, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Norkin, B.V. Stochastic Optimal Control of Risk Processes with Lipschitz Payoff Functions. Cybern Syst Anal 50, 774–787 (2014). https://doi.org/10.1007/s10559-014-9668-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10559-014-9668-7

Keywords

Navigation