Skip to main content

Combinatorial Method for Solving Systems of Linear Constraints

Abstract

This article considers a combinatorial method for computing the basis of the set of solutions to systems of linear constraints over the set of real numbers and an improved method for computing a minimal generating set of solutions over the set of natural numbers. A brief review of such methods in other discrete domains is presented.

This is a preview of subscription content, access via your institution.

References

  1. S. L. Kryvyi, “Criterion of consistency of systems of linear Diophantine equations over a set of natural numbers,” Dop. NANU, No. 5, 107–112 (1999).

    Google Scholar 

  2. S. L. Kryvyi, “Methods of solution and criteria of consistency of systems of linear Diophantine equations over the set of natural numbers,” Cybernetics and Systems Analysis, 35, No. 4, 516–538 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  3. S. L. Kryvyi and W. Gzhyvac, “Algorithms for computing a prebasis of the set of solution to systems of linear Diophantine constraints in discrete domains,” Izv. Irkut. Un-ta, Ser. “Matematika,” 2, No. 2, 82–93 (2009).

    Google Scholar 

  4. S. Kryvyi, L. Matveeva, and W. Grzywac, “Algorithms for building the minimal supported set of solutions to an HSLDI over the set of natural numbers,” in: Proc. Intern. Conf. “Concurrent Systems and Programming,” Warszawa (2005), pp. 281–290.

  5. S. L. Kryvyi, “Algorithms for solving systems of linear Diophantine equations in integer domains” Cybernetics and Systems Analysis, 42, No. 2, 163–175 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  6. S. L. Kryvyi, “Algorithms for solution of systems of linear Diophantine equations in residue fields,” Cybernetics and Systems Analysis, 43, No. 2, 171–178 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  7. S. L. Kryvyi, “Algorithms for solving systems of linear Diophantine equations in residue rings,” Cybernetics and Systems Analysis, 43, No. 6, 787–798 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  8. S. L. Kryvyi, “An algorithm for constructing the basis of the solution set for systems of linear Diophantine equations over the ring of integers,” Cybernetics and Systems Analysis, 45, No. 6, 875–880 (2009).

    Article  MATH  MathSciNet  Google Scholar 

  9. G. A. Donets, “Solution of the safe problem on (0,1)-matrices,” Cybernetics and Systems Analysis, 38, No. 1, 83–88 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  10. G. A. Donets and I. M. Samer Alshalame, “Solving the linear-mosaic problem,” in: The Theory of Optimal Solutions, V. M. Glushkov Cybernetics Institute of the National Academy of Sciences of Ukraine, Kyiv (2005), pp. 15–24.

  11. A. V. Cheremushkin, Lectures on Arithmetic Algorithms in Cryptography [in Russian], MTsNMO, Moscow (2002).

    Google Scholar 

  12. F. Baader and J. Ziekmann, “Unification Theory,” in: Handbook of Logic in Artificial Intelligence and Logic Programming, Oxford University Press (1994), pp. 1–85.

  13. R. Allen and K. Kennedy, “Automatic translation of FORTRAN programs to vector form,” ACM Transactions on Programming Languages and Systems, 9, No. 4, 491–542 (1987).

    Article  MATH  Google Scholar 

  14. N. Creignou, S. Khanna, and M. Sudan, “Complexity classification of Boolean constraint satisfaction problems,” SIAM Monographs on Discrete Mathematics and Applications, Vol. 7. Society for Industrial and Applied Mathematics, Philadelphia, PA. (2001).

    Book  Google Scholar 

  15. A. V. Chugayenko, “An implementation of the TSS algorithm,” USiM, No. 3, 27–33 (2007).

    Google Scholar 

  16. E. Contejan and F. Ajili, “Avoiding slack variables in the solving of linear diophantine equations and inequations,” Theoretical Comp. Science, 173, 183–208 (1997).

    Article  Google Scholar 

  17. L. Pottier, “Minimal solution of linear Diophantine systems: Bounds and algorithms,” in: Proc. 4th Intern. Conf. on Rewriting Techniques and Applications, Como, Italy (1991), pp. 162–173.

  18. E. Domenjoud, “Outils pour la deduction automatique dans les theories associatives-commutatives,” Thesis de Doctorat d’Universite, Universite de Nancy I (1991).

  19. M. Clausen and A. Fortenbacher, “Efficient solution of linear Diophantine equations,” J. Symbolic Computation, 8, Nos. 1–2, 201–216 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  20. J. F. Romeuf, “A polynomial algorithm for solving systems of two linear Diophantine equations,” TCS, 74, No. 3, 329–340 (1990).

    Article  MATH  MathSciNet  Google Scholar 

  21. M. Filgueiras and A. P. Tomas, “A fast method for finding the basis of non-negative solutions to a linear Diophantine equation,” J. Symbolic Comput. 19, No. 2, 507–526 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  22. H. Comon, “Constraint solving on terms: Automata techniques (Preliminary lecture notes),” Intern. Summer School on Constraints in Computational Logics, Gif-sur-Yvette, France (1999).

  23. A. Bockmair and V. Weispfenning, “Solving numerical constraints,” in: Handbook of Automated Reasoning, Elsevier (2001), pp. 753–842.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. L. Kryvyi.

Additional information

Translated from Kibernetika i Sistemnyi Analiz, No. 4, pp. 14–26, July–August, 2014.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kryvyi, S.L. Combinatorial Method for Solving Systems of Linear Constraints. Cybern Syst Anal 50, 495–506 (2014). https://doi.org/10.1007/s10559-014-9638-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10559-014-9638-0

Keywords

  • linear constraint
  • linear Diophantine constraint
  • basis for a solution set