Cybernetics and Systems Analysis

, Volume 50, Issue 1, pp 8–16 | Cite as

Program Verification: State of the Art, Problems, and Results. II1

Article
  • 41 Downloads

Abstract

An analytical survey of modern verification methods for sequential, functional, reactive, and distributed systems is presented. The emphasis is on methods based on properties of abstract interpretations, transition systems, and Petri nets.

Keywords

verification abstract interpretation transition system Petri net model checking 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. L. Kryvyi and O. M. Maksymets, “Program verification: State of the art, problems, and results. I,” Cybernetics and Systems Analysis, 49, No. 6, 805–814 (2013).CrossRefGoogle Scholar
  2. 2.
    O. M. Maksymets, “Searching for program invariants in the form of polynomials,” in: Proc. National Academy of Sciences of Ukraine, Vol. 9, (2013), pp. 44–50.Google Scholar
  3. 3.
    S. L. Kryvyi and O. M. Maksymets, “Program invariant generation over polynomial ring using iterative methods,” Intern. J. “Information Theories & Applications,” 20, No. 2, 113–121 (2013).Google Scholar
  4. 4.
    J. Esparza and K. Heljanko, Unfoldings: A Partial-Order Approach to Model Checking, Springer, Berlin (2008).Google Scholar
  5. 5.
    M. H. T. Hack, Decidability Questions for Petri Nets, Ph.D. Thesis, M.I.T. (1976).Google Scholar
  6. 6.
    V. Ye. Kotov, Petri Nets [in Russian], Nauka, Moscow (1984).Google Scholar
  7. 7.
    T. Murata, “Petri nets: Properties, analysis and applications,” Proc. IEEE, 77, No. 4, 541–580 (1989).CrossRefGoogle Scholar
  8. 8.
    Yu. G. Karpov, Verification of Parallel and Distributed Software Systems [in Russian], BHV-Petersburg, St. Petersburg (2010).Google Scholar
  9. 9.
    E. M. Clarke Jr., O. Grumberg, and D. A. Peled, Model Checking, MIT Press (1999).Google Scholar
  10. 10.
    B. A. Trakhtenbrot and Ya. M. Barzdin, Finite Automata: Behavior and Synthesis [in Russian], Nauka, Moscow (1970).Google Scholar
  11. 11.
    W. Thomas, “Automata on infinite objects,” in: Handbook on Theoretical Comput. Sci., Vol. B, Elsevier (1990), pp. 135–191.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Taras Shevchenko National University of KyivKyivUkraine

Personalised recommendations