Skip to main content

An optimal algorithm to solve digital filtering problem with the use of adaptive smoothing


A one-dimensional problem of digital filtering with the procedure of adaptive smoothing is considered. A time-optimal parallel-pipeline algorithm is proposed to solve this problem. The optimality in the class of algorithms equivalent with respect to information graph is proved.

This is a preview of subscription content, access via your institution.


  1. 1.

    L. V. Koval’chuk, “Ways to increase the performance in processes of median filtering,” Upr. Sistemy Mash., No. 2, 13–15 (1998).

  2. 2.

    T. Kuchinskii and M. Yatsymirskii, “Abbreviated algorithm of fast biorthogonal (9/7) wave conversion,” Visn. DU “L’vivs’ka Politekhnika,” Komp. Inzh. ta Inform. Tekhnol., No. 392, 159–162 (2000).

  3. 3.

    D. K. Mozgovoy, V. I. Voloshin, and E. I. Bushuev, “Filtration of radiometric interference with a space-periodic structure,” J. Autom. Inform. Sci., 36, Issue 6, 14–22 (2004).

    Article  Google Scholar 

  4. 4.

    V. A. Val’kovskii, “An optimal algorithm for solving the problem of digital filtering,” Pattern Recognition and Image Analysis, 4, No. 3, 241–247 (1994).

    Google Scholar 

  5. 5.

    V. G. Ivanov, “Parallel and sequential Haar structures for digital signal processing,” Electron. Modelir., 27, No. 3, 55–66 (2005).

    Google Scholar 

  6. 6.

    S. M. Ivanov and A. Yu. Tropchenko, “Pipeline digit-cut algorithms of rank filtrations and their implementation on PLD,” in: Proc. 5th Intern. Conf. “Pattern Recognition and Information Processing,” 2, Minsk (1999), pp. 239–243.

  7. 7.

    V. S. Markhivka and M. M. Yatsymirskii, “Paralleling of programs of fast orthogonal transforms in multiprocessor systems, Visn. DU “L’vivs’ka Politekhnika,” Komp. Inzh. ta Inform. Tekhnol., No. 349, 21–26 (1998).

  8. 8.

    A. V. Anisimov and M. S. Yadzhak, “Construction of optimal algorithms for mass computations in digital filtering problems,” Cybern. Syst. Analysis, 44, No. 4, 465–476 (2008).

    MathSciNet  MATH  Article  Google Scholar 

  9. 9.

    M. S. Yadzhak, “Quasisystolic computational structures and their application,” Akad. Vestnik, No. 20, 53–57 (2007).

    Google Scholar 

  10. 10.

    V. A. Val’kovskii and V.E. Malyshkin, Synthesis of Parallel Programs and Systems on Computational Models [in Russian], Nauka: Sib. Otdelenie, Novosibirsk (1988).

  11. 11.

    A. V. Anisimov, I. A. Zavadskii, and A. A. Marchenko, “Analysis of the efficiency of the use of optical element base in synchronous arithmetic,” Upr. Sist. Mash., No. 1, 49–58, 66. 2006.

  12. 12.

    L. S. Fainzil’berg, “Adaptive noise smoothing in information technologies of physiological signal processing,” Matem. Mash. Sist., No. 3, 96–104 (2002).

  13. 13.

    L. Lamport, “The parallel execution of DO loops,” Comm. ACM, 17, No. 2, 83–93 (1974).

    MathSciNet  MATH  Article  Google Scholar 

  14. 14.

    V. A. Val’kovskii, Paralleling of Algorithms and Programs: Structural Approach [in Russian], Radio i Svyaz’, Moscow (1989).

    Google Scholar 

  15. 15.

    M. S. Jadzhak, “On a numerical algorithm of solving the cascade digital filtration problem,” J. Autom. Inform. Sci., 36, Issue 6, 23–34 (2004).

    Article  Google Scholar 

  16. 16.

    M. S. Yadzhak, “On optimal in one class algorithm for solving three-dimensional digital filtering problem,” J. Autom. Inform. Sci., 33, Issue 1, 1–1 (2001).

    Google Scholar 

  17. 17.

    R. B. Shteinberg, “Calculating the delay in starts of pipelines for supercomputers with the structural-procedure organization of computations,” Iskusstv. Intellekt, No. 4, 105–112 (2003).

  18. 18.

    M. S. Yadzhak, “Solving the problem of the implementation of some parallel algorithms of digital data filtering,” Vidbir i Obrobka Inform., Issue 35 (111), 116–121 (2011).

  19. 19.

    B. Ya. Shteinberg, Mathematical Methods of Paralleling Recurrent Cycles for Supercomputers with Parallel Memory [in Russian], Izd. Rostov. Univ., Rostov on Don (2004).

Download references

Author information



Corresponding author

Correspondence to M. S. Yadzhak.

Additional information

Translated from Kibernetika i Sistemnyi Analiz, No. 3, May–June, 2013, pp. 142–151.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yadzhak, M.S., Tyutyunnyk, M.I. An optimal algorithm to solve digital filtering problem with the use of adaptive smoothing. Cybern Syst Anal 49, 449–456 (2013).

Download citation


  • optimal parallel-pipeline algorithm
  • digital filtering problem
  • adaptive smoothing
  • quasisystolic structure
  • structural-procedure organization of computations