Skip to main content
Log in

Low-cost modification of Korpelevich’s methods for monotone equilibrium problems

  • Published:
Cybernetics and Systems Analysis Aims and scope

Abstract

A modification of Korpelevich’s method with one metric projection onto the feasible set at an iteration step is proposed to solve monotone equilibrium problems. The weak convergence of the modified method is proved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Nikaido and K. Isoda, “Note on noncooperative convex games,” Pacif. J. Math., No. 5, 807–815 (1955).

  2. C. Baiocchi and A. Capello, Variational and Quasivariational Inequalities [Russian translation], Nauka, Moscow (1988).

    Google Scholar 

  3. E. Blum and W. Oettli, “From optimization and variational inequalities to equilibrium problems,” Math. Stud., 63, 123–145 (1994).

    MathSciNet  MATH  Google Scholar 

  4. A. Gopfert, Chr. Tammer, H. Riahi, and C. Zalinescu, Variational Methods in Partially Ordered Spaces, Springer, New York–Berlin–Heidelberg (2003).

    Google Scholar 

  5. E. I. Nenakhov, “On one method of finding the equilibrium state,” Obch. ta Prikl. Mat., No. 80, 59–67 (1996).

  6. A. S. Antipin, “Equilibrium programming: Proximal methods,” Zh. Vychisl. Mat. Mat. Fiz., 37, No. 11, 1327–1339 (1997).

    MathSciNet  Google Scholar 

  7. A. S. Antipin, Gradient and Extragradient Approaches to Bilinear Equilibrium Programming [in Russian], VTs RAN, Moscow (2002).

    Google Scholar 

  8. Y. M. Ermoliev and S. D. Flaam, “Repeated play of potential games,” Cybernetics and Systems Analysis, Vol. 38, No. 3, 355–367 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  9. G. Mastroeni, “On auxiliary principle for equilibrium problems,” Publ. del Depart. di Math. Dell’Univ. di Pisa, 3, 1244–1258 (2000).

    Google Scholar 

  10. E. G. Golshtein and N. V. Tretyakov, Modified Lagrange Functions: Theory and Optimization Methods [in Russian], Nauka, Moscow (1989).

    Google Scholar 

  11. P. L. Combettes and S. A. Hirstoaga, “Equilibrium programming in Hilbert spaces,” J. Nonlinear Convex Anal., 6, 117–136 (2005).

    MathSciNet  MATH  Google Scholar 

  12. S. Takahashi and W. Takahashi, “Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces,” J. Math. Anal. Appl., 331, 506–515 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  13. N. T. T. Van, J. J. Strodiot, and V. H. Nguyen, “A bundle method for solving equilibrium problems,” Math. Program., Ser. B, 116 (1–2), 529–552 (2009).

    Google Scholar 

  14. B. Nguyen and T. T. H. Dang, “Tikhonov regularization method for system of equilibrium problems in Banach spaces,” Ukr. Mat. Zh., 61, No. 8, 1098–1105 (2009).

    MATH  Google Scholar 

  15. Yu. V. Malitsky and V. V. Semenov, “A proximal algorithm for the equilibrium problems,” in: Abstracts of XVIth Int. Conf. “PDMU-2010” (Yalta, Ukraine), Taras Shevchenko Nat. Univ. of Kiev, Kyiv (2010), pp. 96–97.

  16. Yu. V. Malitsky and V. V. Semenov, “New theorems on the strong convergence of proximal methods for equilibrium programming problems,” Zh. Obchisl. ta Prikl. Mat., No. 3 (102), 79–88 (2010).

  17. G. M. Korpelevich, “Extragradient method for finding saddle points and other problems,” Economika and Matem. Methody, 12, No. 4, 747–756 (1976).

    MATH  Google Scholar 

  18. L. D. Popov, “Modification of the Arrow–Gurvits method for finding saddle points,” Mat. Zametki, 28, No. 5, 777–784 (1980).

    MathSciNet  MATH  Google Scholar 

  19. L. D. Popov, “On schemes for forming leading sequences in the regularized extragradient method for solving variational inequalities,” Izv. Vuzov, Matematika, No. 1, 70–79 (2004).

  20. I. V. Konnov, “Combined subgradient methods for finding saddle points,” Izv. Vuzov, Matematika, No. 10, 30–33 (1992).

  21. I. V. Konnov, “Combined relaxation methods for finding equilibrium points and solving related problems,” Izv. Vuzov, Matematika, No. 2, 46–53 (1993).

  22. I. V. Konnov, S. Schaible, and J. C. Yao, “Combined relaxation method for mixed equilibrium problems,” J. Optim. Theory Appl., 126, 309–322 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  23. A. N. Iusem and B. F. Svaiter, “A variant of Korpelevich’s method for variational in equalities with a new search strategy,” Optimization, 42, 309–321 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  24. J. Y. Bello Cruz and A. N. Iusem, “A strongly convergent direct method for monotone variational inequalities in Hilbert spaces,” Numer. Func. Anal. and Optim., 1, 23–36 (2009).

    Article  MathSciNet  Google Scholar 

  25. D. Q. Tran, L. D. Muu, and V. H. Nguyen, “Extragradient algorithms extended to solving equilibrium problems,” Optimization, 57, No. 6, 749–776 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  26. I. Ekland and R. Temam, Convex Analysis and Variational Problems [Russian translation], Mir, Moscow (1979).

    Google Scholar 

  27. J. P. Aubin and I. Ekland, Applied Nonlinear Analysis [Russian translation], Mir, Moscow (1988).

    Google Scholar 

  28. Z. Opial, “Weak convergence of the sequence of successive approximations for nonexpansive mappings,” Bull. Amer. Math. Soc., 73, 591–597 (1967).

    Article  MathSciNet  MATH  Google Scholar 

  29. G. Stampacchia, “Formes bilineaires coercitives sur lesensembles convexes,” Comptes rendus de l’Acad. des Sci. Paris, 258, 4413–4416 (1964).

    MathSciNet  MATH  Google Scholar 

  30. L. Nirenberg, Topics in Nonlinear Functional Analysis [Russian translation], Mir, Moscow (1977).

    Google Scholar 

  31. I. I. Eremin and V. D. Mazurov, Nonstationary Processes of Mathematical Programming [in Russian], Nauka, Moscow (1979).

    Google Scholar 

  32. V. V. Vasin and I. I. Eremin, Operators and Iterative Processes of Fejer Type: Theory and Applications [in Russian], Regular. and Khaot. Dinamika, Moscow-Izhevsk (2005).

    Google Scholar 

  33. I. I. Eremin and L. D. Popov, “Fejer processes in theory and practice: Recent results,” Izv. Vuzov, Matematika, No. 1, 44–65 (2009).

  34. A. B. Bakushinsky and A. V. Goncharsky, Ill-posed Problems: Numerical Methods and Applications [in Russian], Izd. MGU, Moscow (1989).

    Google Scholar 

  35. P.-E. Mainge, “A hybrid extragradient-viscosity method for monotone operators and fixed point problems,” SIAM J. Control Optim., 47, No. 3, 1499–1515 (2008).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Lyashko.

Additional information

This work was carried out under the financial support of the State Fund of Fundamental Investigations of Ukraine.

Translated from Kibernetika i Sistemnyi Analiz, No. 4, pp. 146–154, July–August 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lyashko, S.I., Semenov, V.V. & Voitova, T.A. Low-cost modification of Korpelevich’s methods for monotone equilibrium problems. Cybern Syst Anal 47, 631–639 (2011). https://doi.org/10.1007/s10559-011-9343-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10559-011-9343-1

Keywords

Navigation