Skip to main content
Log in

Developing the concept of one-way functions for cryptographic security systems using achievements in chaotic dynamics

  • Published:
Cybernetics and Systems Analysis Aims and scope

Abstract

The paper shows that an “informal” interpretation of one-way functions in modern cryptography is inadequate and defines such functions in terms of information theory. This combination of complexity and information theories opens new opportunities for constructing one-way functions, whose one-way transformation is based on the ambiguity of their inverse mappings. It is shown that random mappings are promising candidates for constructing such functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Diffie and M. E. Hellman, “New directions in cryptography,” IEEE Trans. Inform. Theory, 22, 644–654 (1976).

    Article  MATH  MathSciNet  Google Scholar 

  2. R. L. Rivest, A. Shamir, and L. M. Adleman, “A method for obtaining digital signatures and public key cryptosystem,” ACM Commun., 21, No. 2, 120–126 (1978).

    Article  MATH  MathSciNet  Google Scholar 

  3. “Digital signature standard (DSS),” in: FIPS PUB 186-1:1998, USA, Washington, DC, U.S. Dep. of Commerce. Nat. Bureau of Standards, Dec. (1998).

  4. T. ElGamal, “A public-key cryptosystem and a signature scheme based on discrete logarithms,” IEEE Trans. Inform. Theory, 31, 469–472 (1985).

    Article  MATH  MathSciNet  Google Scholar 

  5. C. P. Schnorr, “Efficient identification and a signature for smart card,” J. Cryptology, Lect. Notes Comput. Sci., 435, 239–252 (1990).

    Article  MathSciNet  Google Scholar 

  6. N. Koblitz, “Elliptic curve cryptography,” Math. Comput., 48, 203–209 (1987).

    Article  MATH  MathSciNet  Google Scholar 

  7. N. I. Ptitsyn, Application of the Theory of Deterministic Chaos to Cryptography [in Russian], MGTU, Moscow (2002).

    Google Scholar 

  8. L. Kocarev, “Chaos-based cryptography: a brief overview,” IEEE Circuits and Systems Magazine, 1, 6–21 (2001).

    Article  Google Scholar 

  9. L. Kocarev and Z. Tasev, “Public-key encryption based on Chebyshev maps,” Proc. IEEE Symp. on Circuits and Systems (ISCAS 2003), 3 (2003), pp. 28–31.

    Google Scholar 

  10. N. Masuda and K. Aihara, “Cryptosystem with discretized chaotic maps,” IEEE Trans. on Circuits and Systems, 1: Fundamental Theory and Applications, 49, No. 1, 28–39 (2002).

    Article  MathSciNet  Google Scholar 

  11. Z. Kotulski, J. Szczepanski, K. Gorski, et al., “Application of discrete chaotic dynamical systems in cryptography — DCC method,” Intern. J. Bifurc. Chaos, 9, 1121–1135 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  12. S. Goldwasser and M. Bellare, “Lecture notes on cryptography,” J. Computer and System Sci., 28, No. 2, 270–299 (1984).

    Article  MATH  Google Scholar 

  13. K. Shannon, “A mathematical theory of communication,” in: Papers in Information Theory and Cybernetics [Russian translation], Izd. Inostr. Lit., Moscow (1963), pp. 243–332.

    Google Scholar 

  14. K. Shannon, “Communication theory of secrecy systems,” in: Papers in Information Theory and Cybernetics [Russian translation], Izd. Inostr. Lit., Moscow (1963), pp. 333–369.

    Google Scholar 

  15. H. G. Schuster, Deterministic Chaos, Physik-Verlag, Weinheim (1984).

    MATH  Google Scholar 

  16. I. M. Vinogradov, Fundamentals of the Number Theory [in Russian], Nauka, Moscow (1972).

    Google Scholar 

  17. T. Kohda, “Information sources using chaotic dynamics,” Proc. IEEE, 90, No. 5, 641–661 (2002).

    Article  Google Scholar 

  18. A. S. Dmitriev and S. O. Starkov, “Messaging based on chaos and classical information theory,” Zarubezhn. Radioelektr., Uspekhi Sovr. Radioelektr., No. 11, 4–32 (1998).

  19. P. Yu. Kostenko, S. I. Sivashchenko, A. V. Antonov, and T. P. Kostenko, “Application of the methods of chaotic dynamics to provide information security in communication systems and networks,” Izv. VUZov, Radioelektronika, 49, No. 3, 63–70 (2006).

    Google Scholar 

  20. P. Yu. Kostenko, A. V. Antonov, and T. P. Kostenko, “Analysis of uniqueness of the solution of inverse problems of chaotic dynamics to provide information security in communication systems and networks,” Izv. VUZov, Radioelektronika, 49, No. 8, 3–11 (2006).

    Google Scholar 

  21. Z. Kotulski, J. Szczepanski, K. Gorski, et al., “On constructive approach to chaotic pseudorandom number generators,” in: Proc. Region. Conf. on Milit. Commun. Inform. Syst., CIS Solutions for an Enlarged NATO (RCMCIS’2000) (2000), pp. 191–203.

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Kibernetika i Sistemnyi Analiz, No. 6, pp. 136–146, November–December 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kostenko, P.Y., Antonov, A.V. & Kostenko, T.P. Developing the concept of one-way functions for cryptographic security systems using achievements in chaotic dynamics. Cybern Syst Anal 42, 884–891 (2006). https://doi.org/10.1007/s10559-006-0128-x

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10559-006-0128-x

Keywords

Navigation