Skip to main content
Log in

Adaptive learning of fuzzy BSB and GBSB neural models

  • Published:
Cybernetics and Systems Analysis Aims and scope

Abstract

This article deals with a special class of neural autoassociative memory, namely, with fuzzy BSB and GBSB models and their learning algorithms. These models defined on a hypercube solve the problem of fuzzy clusterization of a data array owing to the fact that the vertices of the hypercube act as point attractors. A membership function is introduced that allows one to classify data that belong to overlapping clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. N. Michel and J. A. Farrel, “Associative memories via artificial neural networks,” IEEE Control Systems Magazine, 10, No. 3, 6–17 (1990).

    Article  Google Scholar 

  2. M. H. Hassoun, Fundamentals of Artificial Neural Networks, MIT Press, Cambridge (MA) (1995).

    MATH  Google Scholar 

  3. R. Rojas, Neural Networks: A Systematic Introduction, Springer-Verlag, Berlin (1996).

    Google Scholar 

  4. M. T. Hagan, H. B. Demuth, and M. Beale, Neural Network Design, PWS Publ. Co., Boston (1996).

    Google Scholar 

  5. S. Haykin, Neural networks: A Comprehensive Foundation, Prentice Hall, Upper Saddle River (N.J.) (1999).

    MATH  Google Scholar 

  6. J. A. Anderson, “Cognitive and psychological computation with neural models,” IEEE Trans. Systems, Man, and Cybernetics, 13, 799–815 (1983).

    Google Scholar 

  7. J. A. Anderson, J. W. Silverstein, S. A. Ritz, R. S. Jones, “Distinctive features. Categorical perception and probability learning: Some applications of a neural model,” in: J. A. Anderson and E. Rosenfeld (eds.), “Neurocomputing: Foundations of Research”, MIT Press, Cambridge (MA) (1988), pp. 413–451.

    Google Scholar 

  8. R. M. Golden, “The Brain-State-in-a-Box neural model is a gradient descent algorithm,” J. Math. Psych., 30, 73–80 (1986).

    Article  MATH  MathSciNet  Google Scholar 

  9. G. Yen and A. N. Michel “A learning and forgetting algorithm in associative memories: Results involving pseudoinverses,” IEEE Trans. Circuits Syst., 38, 1193–1205 (1991).

    Article  MATH  Google Scholar 

  10. S. Hui and S. H. Zak, “Dynamical analysis of the Brain-State-in-a-Box (BSB) neural models,” IEEE Trans. Neural Networks, No. 3, 86–94 (1992).

    Google Scholar 

  11. J. A. Anderson, “The BSB model: A simple nonlinear autoassociative neural network,” in: M. H. Hassoun (ed.), Associative Neural Memories: Theory and Implementation, Oxford Univ. Press, N.Y. (1993), pp. 77–103.

    Google Scholar 

  12. W. E. Lillo, D. C. Miller, S. Hui, and S. H. Zak, “Synthesis of Brain-State-in-a-Box (BSB) based associative memories,” IEEE Trans. Neural Networks, 5, 730–732 (1994).

    Article  Google Scholar 

  13. M. Bohner and S. Hui, “Brain state in a convex body,” IEEE Trans. Neural Networks, 6, 1053–1060 (1995).

    Article  Google Scholar 

  14. R. Perfetti, “A synthesis procedure for Brain-State-in-a-Box (BSB) neural networks,” IEEE Trans. Neural Networks, 6, 1071–1080 (1995).

    Article  Google Scholar 

  15. S. H. Zak, W. E. Lillo, and S. Hui, “Learning and forgetting in generalized Brain-State-in-a-Box (BSB) neural associative memories,” Neural Networks, 9, No. 5, 845–854 (1996).

    Article  Google Scholar 

  16. Ye. V. Bodyanskiy, V. V. Kolodyazhnyi, and N. A. Teslenko, “A learning algorithm for a modified BSB model in clusterization problems,” in: Proc. Intern. Conf. on Automatic Control “Avtomatika-2005,” 1, Vyd. NTU “KhPI,” Kharkiv (2005), pp. 49–50.

    Google Scholar 

  17. C. Oh and S. H. Zak, “Image recall using a large scale generalized Brain-State-in-a-Box neural network,” Int. J. Appl. Math. Comput. Sci., 15, 99–114 (2005).

    MATH  Google Scholar 

  18. M. Martinez, S. Berkovich, and K. Schulten, “’Neural gas’ network forvector quantization and its application to time series prediction,” IEEE Trans. Neural Networks, 4, 559–569 (1993).

    Google Scholar 

  19. J. C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms, Plenum, N.Y. (1981).

    MATH  Google Scholar 

  20. F. Hoeppner, F. Klawonn, and R. Kruse, Fuzzyklusteranalyse. Verfahren fuer die Bilderkennung, Klassifikation und Datenanalyse, Vieweg, Braunsweig (1996).

    Google Scholar 

  21. E. D. Aved’yan, “Modified Kaczmarz algorithms for estimation of parameters of linear objects,” Avtomat. Telemekh., No. 5, 64–72 (1978).

  22. Ye. V. Bodyanskiy, Yu. O. Buryak, and M. L. Sodin, “Adaptive algorithms of identification with finite memory,” Dep. in UkrNIINTI, No. 218 Uk. 85 Dep. (1985).

  23. Ye. V. Bodyanskiy, Yu. O. Buryak, and M. L. Sodin, “Adaptive finite-step identification algorithm,” ASU i Pribory Avtomatiki, No. 84, 53–57 (1987).

  24. Ye. V. Bodyanskiy and O. G. Rudenko, Adaptive Models in Control Systems of Technical Objects [in Russian], UMK VO, Kiev (1988).

    Google Scholar 

  25. O. G. Rudenko, Ye. V. Bodyanskiy, and I. P. Pliss, “An adaptive algorithm of prediction of random sequences,” Avtomatika, No. 1, 51–54 (1979).

  26. S. Kaczmarz, “Angenaeherte Ausloesung von Systemen linearer Gleichungen,” Bull. Int. Acad. Polon. Sci., Let. A, 355–357 (1937).

  27. S. Kaczmarz, “Approximate solution of linear equations,” Int. J. Control, 53, 1269–1271 (1993).

    MathSciNet  Google Scholar 

  28. N. S. Raizman and V. M. Chadeyev, Construction of Production Process Models [in Russian], Energiya, Moscow (1975).

    Google Scholar 

  29. D. K. Faddeyev and V. N. Faddeyeva, Computational Methods of Linear Algebra [in Russian], GIFML, Moscow-Leningrad (1963).

    Google Scholar 

  30. A. Albert, Regression and the Moore-Penrose Pseudoinverse [Russian translation], Nauka, Moscow (1977).

    Google Scholar 

  31. F. R. Gantmakher, Theory of Matrices [in Russian], Nauka, Moscow (1988).

    MATH  Google Scholar 

  32. G. Ortega and V. Reinboldt, Iterative Methods of Solution of Nonlinear Equations Systems with Many Variables [Russian translation], Mir, Moscow (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Kibernetika i Sistemnyi Analiz, No. 6, pp. 18–28, November–December 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bodyanskiy, Y.V., Teslenko, N.A. Adaptive learning of fuzzy BSB and GBSB neural models. Cybern Syst Anal 42, 786–794 (2006). https://doi.org/10.1007/s10559-006-0119-y

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10559-006-0119-y

Keywords

Navigation