Cybernetics and Systems Analysis

, Volume 42, Issue 2, pp 163–175 | Cite as

Algorithms for solving systems of linear diophantine equations in integer domains

  • S. L. Kryvyi
Open Access


Algorithms are described that solve homogeneous systems of linear Diophantine equations over natural numbers and over the set {0, 1}. Properties of the algorithms and their time estimates are given.


linear Diophantine equation basis of a solution set minimal supported set of solutions 


  1. 1.
    T. Murata, “Petri Nets: Properties, analysis, and applications,” Proc. IEEE, 77, No. 4, 541–580 (1989).CrossRefGoogle Scholar
  2. 2.
    F. Baader and J. Ziekmann, “Unification theory,” in: Handbook of Logic in Artificial Intelligence and Logic Programming, Univ. Press, Oxford (1994), pp. 1–85.Google Scholar
  3. 3.
    E. Contenjean and H. Devie, “An efficient algorithm for solving systems of Diophantine equations, ” Inform. Comput., 113, No. 1, 143–172 (1994).CrossRefGoogle Scholar
  4. 4.
    M. Clausen and A. Fortenbacher, “Efficient solution of linear Diophantine equations,” Journ. Symbol. Comput., 8, Nos. 1–2, 201–216 (1989).MATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    E. Domenjoud, “Outils pour la deduction automatique dans les theories associatives-commutatives, ” Thes. de Doct. d’Univ., Univ. de Nancy I (1991).Google Scholar
  6. 6.
    H. Comon, “Constraint solving on terms: Automata techniques (Preliminary lecture notes),” in: Intern. Summer School on Constraints in Computational Logics (Gif-sur-Yvette, France, Sept. 5–8, 1999), Gif-sur-Yvette (1999).Google Scholar
  7. 7.
    P. Gordan, “Ueber die Auflosung linearen Gleidungen mit reallen Coefficienten,” Math. Ann., No. 6, 23–28 (1873).Google Scholar
  8. 8.
    D. Hilbert, “Ueber die Theorie der algebraischen Formen,” Math. Ann., No. 36, 473–534 (1890).Google Scholar
  9. 9.
    S. L. Kryvyi, “Algorithms of solution of systems of linear Diophantine constraints over the set {0,1},” Kibern. Sist. Anal., No. 5, 58–69 (2003).Google Scholar
  10. 10.
    S. Krivoi, “A criterion of compatibility of systems of linear Diophantine constraints,” Lect. Notes Comp. Sci., No. 2328, 264–271 (2002).Google Scholar
  11. 11.
    O. V. Usatyuk, “Realization of the incremental version of an algorithm for checking the compatibility of systems of linear Diophantine equations in the field of natural numbers,” USiM, No. 3, 26–32 (2002).Google Scholar
  12. 12.
    M. Hermann, L. Juban, and P. G. Kolaitis, “On the complexity of counting the Hilbert basis of a linear Diophantine system,” Lect. Notes Comp. Sci., No. 1705, 13–32 (1999).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • S. L. Kryvyi
    • 1
  1. 1.Cybernetics InstituteNational Academy of Sciences of UkraineKievUkraine

Personalised recommendations