Cybernetics and Systems Analysis

, Volume 41, Issue 4, pp 564–571 | Cite as

Parameter Optimization Problems for Multilayer Optical Coatings

  • P. I. Stetsyuk
  • A. B. Mitsa


Two problems of finding optimal parameters for multilayer optical coatings are considered. They are formulated as multiextremal nonlinear programming problems with a complex objective function. Finding local extrema by first-order methods is discussed. The ways of calculating the gradient of the objective function depending on the number of layers in the optical coating are analyzed.


multilayer optical coating characteristic matrix radiation transmission factor nonlinear programming problem gradient method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sh. A. Furman and A. V. Tikhonravov, Basics of Optics of Multilayer Systems, Gif-sur Yvette, Editions Frontiers (1992).Google Scholar
  2. 2.
    N. Z. Shor, Minimization Methods for Nondifferentiable Functions and their Applications [in Russian], Naukova Dumka, Kiev (1979).Google Scholar
  3. 3.
    N. Z. Shor, Nondifferentiable Optimization and Polynomial Problems, Kluwer Academ. Publ., Boston-Dordrecht-London (1998).Google Scholar
  4. 4.
    P. E. Gill, W. Murray, and M. H. Wright, Practical Optimization, Acad. Press, New York (1981).Google Scholar
  5. 5.
    Yu. E. Nesterov, Efficient Methods in Nonlinear Programming [in Russian], Radio i Svyaz', Moscow (1989).Google Scholar
  6. 6.
    E. Polak, Computational Methods in Optimization, Acad. Press, New York (1971).Google Scholar
  7. 7.
    B. T. Polyak, Introduction to Optimization [in Russian], Nauka, Moscow (1983).Google Scholar
  8. 8.
    B. N. Pshenichnyi and Yu. M. Danilin, Numerical Methods in Extremum Problems [in Russian], Nauka, Moscow (1975).Google Scholar
  9. 9.
    D. M. Himmelblau, Applied Nonlinear Programming, McGraw Hill, New York (1972).Google Scholar
  10. 10.
    N. Z. Shor, N. G. Zhurbenko, A. P. Likhovid, and P. I. Stetsyuk, “Algorithms of nondifferentiable optimization: Development and application,” Cyb. Syst. Anal., Vol. 39, No.4, 537–548 (2003).MathSciNetGoogle Scholar
  11. 11.
    O. V. Mitsa and P. I. Stetsyuk, “The problem of finding optimal parameters of a uniform optic coating,” in: Theory of Optimal Solutions [in Russian], Inst. Kibern. im. V. M. Glushkova NAN Ukrainy, Kiev (2003), pp. 127–134.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • P. I. Stetsyuk
    • 1
  • A. B. Mitsa
    • 2
  1. 1.V. M. Glushkov Institute of CyberneticsNational Academy of Sciences of UkraineKievUkraine
  2. 2.Uzhgorod National UniversityUzhgorodUkraine

Personalised recommendations