Skip to main content
Log in

Texture Analysis by Accurate Identification of Simple Markovian Models

  • Published:
Cybernetics and Systems Analysis Aims and scope

Abstract

A more accurate identification (estimation of parameters) of simple Markov-Gibbs random field models of images results in a better segmentation of specific multimodal images and realistic synthesis of some types of natural textures. Identification algorithms for segmentation are based in part on a novel modification of an unsupervised learning algorithm published first in “Cybernetics and Systems Analysis” (“Kibernetika i Sistemnyi Analiz”) almost four decades ago. A texture synthesis algorithm uses an identified model for selecting a characteristic geometric shape of and a placement grid for texture elements sampled from a training image utilized for the identification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. O. Barndorff-Nielsen, Information and Exponential Families in Statistical Theory, Wiley, N.Y. (1978).

    Google Scholar 

  2. P. Brodatz, Textures: A Photographic Album for Artists and Designers, Dover, New York (1966).

    Google Scholar 

  3. G. R. Cross and A. K. Jain, “Markov random field texture models,” IEEE Trans. on Pattern Analysis and Machine Intelligence, 5, 25–39 (1983).

    Google Scholar 

  4. A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from incomplete data via the EM algorithm,” J. Royal Statistical Society, 39B, 1–38 (1977).

    Google Scholar 

  5. R. C. Dubes and A. K. Jain, “Random field models in image analysis,” J. Applied Statistics, 16, 131–164 (1989).

    Google Scholar 

  6. R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, Wiley, N.Y. (2001).

    Google Scholar 

  7. A. A. Efros and W. T. Freeman, “Image quilting for texture synthesis and transfer,” in: Proc. 28th Int. Conf. on Computer Graphics and Interactive Techniques SIGGRAPH 2001 (Los Angeles, California, USA), ACM Press, N.Y. (2001), pp. 341–346.

    Google Scholar 

  8. A. A. Efros and T. K. Leung, “Texture synthesis by non-parametric sampling,” in: Proc. IEEE Int. Conf. on Computer Vision (Greece, Corfu), 2, IEEE CS Press, Los Alamitos (1999), pp. 1033–1038.

    Google Scholar 

  9. S. Geman and D. Geman, “Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images,” IEEE Trans. on Pattern Analysis and Machine Intelligence, 6, 721–741 (1984).

    Google Scholar 

  10. A. A. Farag, A. El-Baz, and G. L. Gimel’farb, “Iterative approximation of empirical grey level distributions for precise segmentation of multimodal images,” EURASIP J. on Applied Signal Processing [in print] (2005).

  11. G. L. Gimel’farb, “A general approach to the construction of statistically optimal image recognition algorithms” Kibernetika, No. 3, 84–90 (1967).

  12. G. L. Gimel’farb, “Texture modeling with multiple pairwise pixel interactions,” IEEE Trans. on Pattern Analysis and Machine Intelligence, 18, 1110–1114 (1996).

    Article  Google Scholar 

  13. G. L. Gimel’farb, Image Texture and Gibbs Random Fields, Kluwer, Dordrecht (1999).

    Google Scholar 

  14. G. Gimel’farb, A. A. Farag, and A. El-Baz, “Expectation-Maximization for a linear combination of Gaussians,” in: Proc. IAPR Int. Conf. Pattern Recognition (ICPR-2004) (Cambridge, UK), 3, IEEE CS Press, Los Alamitos (2004), pp. 422–425.

    Google Scholar 

  15. G. Gimel’farb and D. Zhou, “Fast synthesis of large-size textures using bunch sampling,” in: Proc. Conf. Image & Vision Computing, New Zealand (IVCNZ 2002) (Auckland, New Zealand) (2002), pp. 215–220.

  16. A. Goshtasby and W. D. O’Neill, “Curve fitting by a sum of Gaussians,” CVGIP: Graphical Models and Image Processing, 56, 281–288 (1999).

    Article  Google Scholar 

  17. R. M. Haralick and L. G. Shapiro, Computer and Robot Vision, Vol. 2, Addison-Wesley, Reading (1993).

    Google Scholar 

  18. M. Hassner and J. Sklansky, “The use of Markov random fields as models of textures, Computer Graphics, and Image Processing,” 12, 357–370 (1980).

    Google Scholar 

  19. B. Julesz, “Textons, the elements of texture perception, and their interactions,” Nature, No. 290, 91–97 (1981).

  20. V. A. Kovalevsky, “State-of-the-art of the pattern recognition problem,” Kibernetika, No. 5, 78–86 (1967).

  21. L. Liang, C. Liu, and H. Y. Shum, “Real-time texture synthesis by patch-based sampling,” Technical Report MSR-TR-2001-40, Microsoft Research (2001).

  22. V. Kwatra, A. Schodl, I. Essa, G. Turk, and A. Bobick, “Graphcut textures: Image and video synthesis using graph cuts,” in: ACM Trans. on Graphics 22 (Proc. 30th Conf. on Computer Graphics and Interactive Techniques SIGGRAPH 2003, San Diego, California, USA), ACM Press, N.Y. (2003), pp. 277–286.

    Google Scholar 

  23. C. J. McLachlan, The EM Algorithm and Extensions, Wiley, N.Y. (1997).

    Google Scholar 

  24. A. Neubeck, A. Zalesny, and L. van Gool, “Cut-primed smart copying,” in: Proc. Texture 2003: The 3rd Int. Workshop on Texture Analysis and Synthesis in Conjunction with ICCV 2003 (Nice, France), Heriot-Watt Univ. (2003), pp. 71–76.

  25. N. R. Pal and S. K. Pal, “A review on image segmentation techiniques,” Pattern Recognition, 26, 1277–1294 (1993).

    Article  Google Scholar 

  26. R. Picard, C. Graszyk, S. Mann, et al., “VisTex database,” MIT Media Lab, Cambridge, Mass. (1995).

    Google Scholar 

  27. T. Poggio and F. Girosi, “Networks for approximation and learning,” Proc. IEEE, 78, 1481–1497 (1990).

    Article  Google Scholar 

  28. M. I. Schlesinger, “Interdependence between learning and self-learning in pattern recognition,” Kibernetika, No. 2, 81–88 (1968).

  29. M. I. Schlesinger and V. Hlavac, Ten Lectures on Statistical and Structural Pattern Recognition, Kluwer, Dordrecht (2002).

    Google Scholar 

  30. H. W. Sorenson and D. L. Alspach, “Recursive Bayesian estimation using Gaussian sums,” Automatica, 7, 465–479 (1971).

    Article  Google Scholar 

  31. A. Srivastava, X. Liu, and U. Grenander, “Universal analytical forms for modeling image probabilities,” IEEE Trans. on Pattern Analysis and Machine Intelligence, 24, 1200–1214 (2002).

    Article  Google Scholar 

  32. K. Voss and H. Suesse, “Invariant fitting of planar objects with primitives,” IEEE Trans. on Pattern Analysis and Machine Intelligence, 19, 80–84 (1997).

    Article  Google Scholar 

  33. D. Zhou and G. Gimel’farb, “Model-based estimation of texels and placement grids for fast realistic texture synthesis,” in: Proc. Texture 2003: The 3rd Int. Workshop on Texture Analysis and Synthesis in Conjunction with ICCV 2003 (Nice, France), Heriot-Watt Univ. (2003), pp. 119–123.

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Kibernetika i Sistemnyi Analiz, No. 1, pp. 37–49, January–February 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gimel’farb, G., Farag, A.A. Texture Analysis by Accurate Identification of Simple Markovian Models. Cybern Syst Anal 41, 27–38 (2005). https://doi.org/10.1007/s10559-005-0038-3

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10559-005-0038-3

Keywords

Navigation