Skip to main content
Log in

Afterload Assessment With or Without Central Venous Pressure: A Preliminary Clinical Comparison

  • Original Paper
  • Published:
Cardiovascular Engineering

Abstract

A clinical comparison, of two methods of afterload assessment, has been made. The first method, systemic vascular resistance index (SVR i ), is based upon the traditional formula for afterload which utilizes central venous pressure (CVP), as well as cardiac index (C i ), and mean arterial blood pressure (MAP). The second method, total systemic vascular resistance index (TSVR i ), also uses MAP and C i . However, TSVR i ignores the contribution of CVP. This preliminary examination, of 10 randomly-selected ICU patients, has shown a high degree of correlation (ranging from 90 to 100%) between SVR i and TSVR i (P < 0.0001). Furthermore, there was also a high degree of correlation (ranging from 94 to 100%) noted between the hour-to-hour change in SVR i with the hour-to-hour change in TSVR i (P < 0.0001). The results, of this pilot study, support the premise that the use of CVP may not always be necessary for afterload evaluation in the clinical setting. Minimally-invasive means of measuring both C i and MAP, without CVP, may be adequate for use in assessing afterload.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Typically, the radial artery is used for this purpose.

  2. Atys Medical (France) also manufactures an EDM. However, it is not currently available in the USA.

References

  • American Society of Anesthesiologists (ASA). Task force on guidelines for pulmonary artery catheterization. Practice guidelines for pulmonary artery catheterization. Anesthesiology. 2003;99(4):988–1014.

    Google Scholar 

  • Atlas GM. Development and application of a logistic-based systolic model for hemodynamic measurements using the esophageal Doppler monitor. Cardiovasc Eng. 2008;8(3):159–73.

    Article  PubMed  Google Scholar 

  • Atlas G, Mort T. Placement of the esophageal Doppler ultrasound monitor probe in awake patients. Chest. 2001;119:319.

    Article  CAS  PubMed  Google Scholar 

  • Milnor WR. Vascular impedance. In: Hemodynamics. 2nd ed. Baltimore: Williams & Wilkins;(1989). pp. 167–203.

  • Barash PG, Cullen BF, Stoelting RK. Clinical anesthesia. 6th ed. Phila: Lippincott Williams and Wilkins; 2009.

    Google Scholar 

  • Barin E, Haryadi DG, Schookin SI, Westenskow DR, Zubenko VG, Beliaev KR, Morozov AA. Evaluation of a thoracic bioimpedance cardiac output monitor during cardiac catheterization. Crit Care Med. 2000;28(3):698–702.

    Google Scholar 

  • Bilello JF, Davis JW, Cunningham MA, Groom TF, Lemaster D, Sue LP. Cervical spinal cord injury and the need for cardiovascular intervention. Arch Surg. 2003;138:1127–9.

    Article  PubMed  Google Scholar 

  • Blot SI, Depuydt P, Annemans L, Benoit D, Hoste E, De Waele JJ, Decruyenaere J, Vogelaers D, Colardyn F, Vandewoude KH. Clinical and economic outcomes in critically ill patients with nosocomial catheter-related bloodstream infections. Clin Infect Dis. 2005;41:1591–8.

    Article  PubMed  Google Scholar 

  • Carrel T, Englberger L, Mohacsi P, Neidhart P, Schmidli J. Low systemic vascular resistance after cardiopulmonary bypass: incidence, etiology, and clinical importance. J Card Surg. 2000;15:347–53.

    Article  CAS  PubMed  Google Scholar 

  • Chatti R, de Rudniki S, Marqué S, Dumenil AS, Descorps-Declère A, Cariou A, Duranteau J, Aout M, Vicaut E, Cholley BP. Comparison of two versions of the Vigileo-® system (1.03 and 1.07) for stroke volume estimation: a multicentre, blinded comparison with oesophageal Doppler measurements. Br J Anaesth. 2009;102:463–9.

    Article  CAS  PubMed  Google Scholar 

  • Cremer J, Martin M, Redl H, Bahrami S, Abraham C, Graeter T, Haverich A, Schlag G, Hans-Beorg B. Systemic inflammatory response syndrome after cardiac operations. Ann Thorac Surg. 1996;61:1714–20.

    Article  CAS  PubMed  Google Scholar 

  • Dark PM, Singer M. The validity of trans-esophageal Doppler ultrasonography as a measure of cardiac output in critically ill adults. Intensive Care Med. 2004;30:2060–6.

    Article  PubMed  Google Scholar 

  • DiCorte CJ, Latham P, Greilich PE, Cooley MV, Grayburn PA, Jessen ME. Esophageal Doppler monitor determinations of cardiac output and preload during cardiac operations. Ann Thorac Surg. 2000;69(6):1782–6.

    Article  CAS  PubMed  Google Scholar 

  • Dodd TEL. Nasal insertion of the oesophageal Doppler probe. Anaesthesia. 2002;57(4):412.

    Article  CAS  PubMed  Google Scholar 

  • Domino KB, Bowdle TA, Posner KL, Spitellie PH, Lee LA, Cheney FW. Injuries and liability related to central vascular catheters: a closed claims analysis. Anesthesiology. 2004;100(6):1411–8.

    Article  PubMed  Google Scholar 

  • Drazner MH, Rame JE, Stevenson LW, Dries DL. Prognostic importance of elevated jugular venous pressure and a third heart sound in patients with heart failure. NEJM. 2001;345(8):574–81.

    Article  CAS  PubMed  Google Scholar 

  • Hawkins DL. Using U-statistics to derive the asymptotic distribution of Fisher’s Z statistic. Am Stat. 1989;43:235–7.

    Article  Google Scholar 

  • Ho AMH, Dion PW, Karmaker MK, Jenkins CR. Accuracy of central venous pressure monitoring during simultaneous continuous infusion through the same catheter. Anaesthesia. 2005;60(10):1027–30.

    Article  PubMed  Google Scholar 

  • Imhoff M, Lehner JH, Dietrich Lo¨hlein D. Noninvasive whole-body electrical bioimpedance cardiac output and invasive thermodilution cardiac output in high-risk surgical patients. Crit Care Med. 2000;28:2812–8.

    Article  CAS  PubMed  Google Scholar 

  • Kohsaka S, Menon V, Lowe AM, Lange M, Dzavik V, Sleeper LA, Hochman JS. Systemic inflammatory response syndrome after acute myocardial infarction complicated by cardiogenic shock. Arch Intern Med. 2005;165:1643–50.

    Article  PubMed  Google Scholar 

  • Kreyszig E. Advanced engineering mathematics. 8th ed. New York: Wiley; 1999.

    Google Scholar 

  • Kutner MH, Nachtsheim CJ, Neter J. Applied linear regression models. 4th ed. Chicago: McGraw-Hill; 2004.

    Google Scholar 

  • Li JK-J. The arterial circulation. Physical principles and clinical applications. Totowa: Humana Press; 2000.

    Google Scholar 

  • Li JK-J. Dynamics of the vascular system. Singapore: World Scientific; 2004.

    Google Scholar 

  • Madan AK, UyBarreta VV, Aliabadi-Wahle S, Jesperson R, Hartz RS, Flint LM, Steinberg SM. Esophageal Doppler ultrasound monitor versus pulmonary artery catheter in the hemodynamic management of critically ill surgical patients. J Trauma Injury Infect Critic Care. 1999;46(4):607–11.

    Article  CAS  Google Scholar 

  • Magder S. How to use central venous pressure measurements. Curr Opin Crit Care. 2005;11(3):264–70.

    Article  PubMed  Google Scholar 

  • Manecke GR. Edwards® sensor and Vigileo® monitor: easy, accurate, reliable cardiac output assessment using the arterial pulse wave. Expert Rev Med Devices. 2005;2(5):523–7.

    Article  PubMed  Google Scholar 

  • Melo J, Peters JI. Low systemic vascular resistance: differential diagnosis and outcome. Crit Care. 1999;3:71–7.

    Article  PubMed  Google Scholar 

  • National Heart, Lung, and Blood Institute (NHLBI). Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network. Pulmonary artery versus central venous catheter to guide treatment of acute lung injury. NEJM. 2006;354(21):2213–23.

    Google Scholar 

  • Nichols W, O’Rourke M. Vascular impedance. In: McDonald’s blood flow in arteries. Theoretical, experimental and clinical principles. 5th ed. London: Hodder Arnold, Oxford University Press; 2005. pp. 233–67.

  • Ouzounian JG, Masaki DI, Abboud TK, Greenspoon JS. Systemic vascular resistance index determined by thoracic electrical bioimpedance predicts the risk for maternal hypotension during regional anesthesia for cesarean delivery. Am J Obstet Gynecol. 1996;174(3):1019–25.

    Google Scholar 

  • Richards MJ, Edwards JR, Culver DH, Gaynes RP. The National Nosocomial Infections Surveillance System. Nosocomial infections in combined medical and surgical intensive care units in the United States. Infect Control Hosp Epidemiol. 2000;21:510–5.

    Article  CAS  PubMed  Google Scholar 

  • Sandham JD, Hull RD, et al. A randomized, controlled trial of the use of pulmonary-artery catheters in high-risk surgical patients. NEJM. 2003;348(1):5–14.

    Article  PubMed  Google Scholar 

  • Segers P, Rietzschel ER, De Buyzere ML, Vermeersch SJ, De Bacquer D, Van Bortel LM, De Backer G, Gillebert TC, Verdonck PR. Noninvasive (Input) impedance, pulse wave velocity, and wave reflection in healthy middle-aged men and women. Hypertension. 2007;49(6):1248–55.

    Article  CAS  PubMed  Google Scholar 

  • Senni M, Tribouilloy CM, Rodeheffer RJ, Jacobsen SJ, Evans JM, Bailey KR, Redfield MM. Congestive heart failure in the community: a study of all incident cases in Olmsted county, Minnesota, in 1991. Circulation. 1998;98:2282–9.

    CAS  PubMed  Google Scholar 

  • Simon R, Desebbe O, Henaine R, Bastien O, Lehot JJ, Cannesson M. Comparison of ICG thoracic bioimpedance cardiac output monitoring system in patients undergoing cardiac surgery with pulmonary artery cardiac output measurements. [French (English abstract)] Annales Françaises d’Anesthésie et de Réanimation. 2009;28(6):537–41.

  • Singer M, Clarke J, Bennett ED. Continuous hemodynamic monitoring by esophageal Doppler. Crit Care Med. 1989;17:447–52.

    Article  CAS  PubMed  Google Scholar 

  • Soliman DE, Maslow AD, Bokesch PM, Strafford M, Karlin L, Marx GR. Transoesophageal echocardiography during scoliosis repair: comparison with CVP monitoring. Can J Anaesth. 1998;45(10):925–32.

    Google Scholar 

  • Stewart RD, Psyhojos T, Lahey SJ, Levitsky S, Campos CT. Central venous catheter use in low-risk coronary artery bypass grafting. Ann Thorac Surg. 1998;66(4):1306–11.

    Article  CAS  PubMed  Google Scholar 

  • Valtier B, Cholley BP, Belot JP, de la Coussaye JE, Mateo J, Payen D. Noninvasive monitoring of cardiac output in critically ill patients using transesophageal Doppler. Am J Respir Crit Care Med. 1998;158:77–83.

    CAS  PubMed  Google Scholar 

  • Wang GY, Ma B, Tang HT, Zhu SH, Lu J, Wei W, Ge SD, Xia ZF. Esophageal echo-Doppler monitoring in burn shock resuscitation: are hemodynamic variables the critical standard guiding fluid therapy? J Trauma. 2008;65:1396–401.

    Article  PubMed  Google Scholar 

  • Warzawski RC, Deye AN, et al. Early use of the pulmonary artery catheter and outcomes in patients with shock and acute respiratory distress syndrome: a randomized controlled trail. JAMA. 2003;290(20):2713–20.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glen Atlas.

Appendix

Appendix

The Interrelationship Between ΔSVR i and ΔTSVR i

ΔSVR i is calculated using the definition of SVR i from Eq. 1:

$$ \Updelta {\text{SVR}}_{i} = \left[ {{\frac{{\left( {{\text{MAP}}_{2} - {\text{CVP}}_{2} } \right)}}{{C_{{i_{2} }} }}}} \right] \cdot 80 - \left[ {{\frac{{\left( {{\text{MAP}}_{1} - {\text{CVP}}_{1} } \right)}}{{C_{{i_{1} }} }}}} \right] \cdot 80 $$
(1A)

Rearrangement yields:

$$ \Updelta {\text{SVR}}_{i} = \left[ {{\frac{{{\text{MAP}}_{2} }}{{C_{{i_{2} }} }}} - {\frac{{{\text{MAP}}_{1} }}{{C_{{i_{1} }} }}}} \right] \cdot 80 + \left[ {{\frac{{{\text{CVP}}_{1} }}{{C_{{i_{1} }} }}} - {\frac{{{\text{CVP}}_{2} }}{{C_{{i_{2} }} }}}} \right] \cdot 80 $$
(2A)

Substituting the definition of TSVR i from Eq. 2 results in:

$$ \Updelta {\text{SVR}}_{i} = \Updelta {\text{TSVR}}_{i} + \left[ {{\frac{{{\text{CVP}}_{1} }}{{C_{{i_{1} }} }}} - {\frac{{{\text{CVP}}_{2} }}{{C_{{i_{2} }} }}}} \right] \cdot 80 $$
(3A)

Realizing that:

$$ {\frac{{{\text{CVP}}_{1} }}{{C_{{i_{1} }} }}} \approx {\frac{{{\text{CVP}}_{2} }}{{C_{{i_{2} }} }}}\quad {\text{thus:}}\left[ {{\frac{{{\text{CVP}}_{1} }}{{C_{{i_{1} }} }}} - {\frac{{{\text{CVP}}_{2} }}{{C_{{i_{2} }} }}}} \right] \approx 0 $$
(4A)

Finally:

$$ \Updelta {\text{SVR}}_{i} \approx \Updelta {\text{TSVR}}_{i} $$
(5A)

This concept can also be illustrated using the definition of the total differential:

$$ \Updelta {\text{SVR}}_{i} = {\frac{{\partial {\text{SVR}}_{i} }}{{\partial {\text{MAP}}}}}\Updelta {\text{MAP}} + {\frac{{\partial {\text{SVR}}_{i} }}{{\partial C_{i} }}}\Updelta C_{i} + {\frac{{\partial {\text{SVR}}_{i} }}{{\partial {\text{CVP}}}}}\Updelta {\text{CVP}} $$
(6A)

and

$$ \begin{gathered} \Updelta {\text{TSVR}}_{i} = {\frac{{\partial {\text{TSVR}}_{i} }}{{\partial {\text{MAP}}}}}\Updelta {\text{MAP}} + {\frac{{\partial {\text{TSVR}}_{i} }}{{\partial C_{i} }}}\Updelta C_{i} \hfill \\ \hfill \\ \end{gathered} $$
(7A)

Since \( {\frac{{\partial {\text{SVR}}_{i} }}{{\partial {\text{CVP}}}}}\Updelta {\text{CVP}} \approx 0 \) then \( \Updelta {\text{SVR}}_{i} \approx \Updelta {\text{TSVR}}_{i} \). Also: \( {\frac{{\partial {\text{SVR}}_{i} }}{{\partial {\text{MAP}}}}} \approx {\frac{{\partial {\text{TSVR}}_{i} }}{{\partial {\text{MAP}}}}} \) and \( {\frac{{\partial {\text{SVR}}_{i} }}{{\partial C_{i} }}} \approx {\frac{{\partial {\text{TSVR}}_{i} }}{{\partial C_{i} }}} \).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Atlas, G., Berger, J. & Dhar, S. Afterload Assessment With or Without Central Venous Pressure: A Preliminary Clinical Comparison. Cardiovasc Eng 10, 246–252 (2010). https://doi.org/10.1007/s10558-010-9113-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10558-010-9113-0

Keywords

Navigation