Skip to main content
Log in

Estimation of Nonlinear Mechanical Properties of Vascular Tissues via Elastography

  • ORIGINAL PAPER
  • Published:
Cardiovascular Engineering

Abstract

A new method is proposed for estimation of nonlinear elastic properties of soft tissues. The proposed approach involves a combination of nonlinear finite element methods with a genetic algorithm for estimating tissue stiffness profile. A multipoint scheme is introduced that satisfies the uniqueness condition, improves the estimation performance, and reduces the sensitivity to image noise. The utility of the proposed techniques is demonstrated using optical coherence tomography (OCT) images. The approach is, however, applicable to other imaging systems and modalities, as well, provided a reliable image registration scheme. The proposed algorithm is applied to realistic (2D) and idealized (3D) arterial plaque models, and proves promising for the estimation of intra-plaque distribution of nonlinear material properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Baldewsing RA, Schaar JA, de Korte CL, Mastik F, Serruys PW, van der Steen AF. Intravascular ultrasound elastography: a clinician’s tool for assessing vulnerability and material composition of plaques. Stud Health Technol Inform. 2005;113:75–96.

    PubMed  Google Scholar 

  • Barbone PE, Bamber JC. Quantitative elasticity imaging: what can and cannot be inferred from strain images. Phys Med Biol. 2002;47:2147–2164.

    Article  PubMed  Google Scholar 

  • Barbone PE, Gokhale NH. Elastic modulus imaging: on the uniqueness and nonuniqueness of the elastography inverse problem in two dimensions. Inverse Probl. 2004;20:283–296.

    Article  Google Scholar 

  • Bathe K-J. Finite element procedures. Upper Saddle River, New Jersey: Prentice Hall; 1996.

    Google Scholar 

  • Chan RC, Chau AH, Karl WC, Nadkarni S, Khalil AS, Iftimia N, et al. OCT-based arterial elastography: robust estimation exploiting tissue biomechanics. Opt Express. 2004;12:4558–4572.

    Article  CAS  PubMed  Google Scholar 

  • Chau AH, Chan RC, Shishkov M, MacNeill B, Iftimiia N, Tearney GJ, et al. Mechanical analysis of atherosclerotic plaques based on optical coherence tomography. Ann Biomed Eng. 2004;32:1494–1503.

    Article  PubMed  Google Scholar 

  • Doyley MM, Meaney PM, Bamber JC. Evaluation of an iterative reconstruction method for quantitative elastography. Phys Med Biol. 2000;45:1521–1540.

    Article  PubMed  CAS  Google Scholar 

  • Draney MT, Herfkens RJ, Hughes TJ, Pelc NJ, Wedding KL, Zarins CK, et al. Quantification of vessel wall cyclic strain using cine phase contrast magnetic resonance imaging. Ann Biomed Eng. 2002;30:1033–1045.

    Article  PubMed  Google Scholar 

  • Duck FA. Physical properties of tissues—a comprehensive reference book. Sheffield, United Kingdom: Academic Press; 1990.

    Google Scholar 

  • Fercher AF, Drexler W, Hitzenberger CK, Lasser T. Optical coherence tomography—principles and applications. Rep Prog Phys. 2003;66:239–303.

    Article  Google Scholar 

  • Haupt RL, Haupt SE. Practical genetic algorithms. New York, NY: Wiley; 2004.

    Google Scholar 

  • Huang H, Virmani R, Younis H, Burke AP, Kamm RD, Lee RT. The impact of calcification on the biomechanical stability of atherosclerotic plaques. Circulation. 2001;103:1051–1056.

    PubMed  CAS  Google Scholar 

  • Kaazempur-Mofrad MR, Younis HF, Patel S, Isasi A, Chung C, Chan RC, et al. Cyclic strain in human carotid bifurcation and its potential correlation to atherogenesis: idealized and anatomically realistic models. J Eng Math. 2003;47:299–314.

    Article  Google Scholar 

  • Kallel F, Bertrand M. Tissue elasticity reconstruction using linear perturbation method. IEEE Trans Med Imaging. 1996;15:299–313.

    Article  PubMed  CAS  Google Scholar 

  • Karimi R, Chan R, Houser S, Bouma BE, Kaazempur Mofrad MR. A novel framework for elastography and modulus estimation: integration of tissue mechanics with imaging. 2006 IEEE International Symposium on Biomedical Imaging: From Macro to Nano, Arlington, Virginia, USA. IEEE; 2006. p. 602–605.

  • Kawase Y, Hoshino K, Yoneyama R, McGregor J, Hajjar RJ, Jang I-K, et al. In vivo volumetric analysis of coronary stent using optical coherence tomography with a novel balloon occlusion-flushing catheter: a comparison with intravascular ultrasound. Ultrasound Med Biol. 2005;31:1343–1349.

    Article  PubMed  Google Scholar 

  • Khalil AS, Chan RC, Chau AH, Bouma BE, Mofrad MR. Tissue elasticity estimation with optical coherence elastography: toward mechanical characterization of in vivo soft tissue. Ann Biomed Eng. 2005;33:1631–1639.

    Article  PubMed  Google Scholar 

  • Khalil AS, Bouma BE, Kaazempur Mofrad MR. A combined FEM/genetic algorithm for vascular soft tissue elasticity estimation. Cardiovasc Eng. 2006;6:93–102.

    Article  PubMed  Google Scholar 

  • Lee RT, Loree HM, Cheng GC, Lieberman EH, Jaramillo N, Schoen FJ. Computational structural analysis based on intravascular ultrasound imaging before in vitro angioplasty: prediction of plaque fracture locations. J Am Coll Cardiol. 1993;21:777–782.

    Article  PubMed  CAS  Google Scholar 

  • Lee RT, Schoen FJ, Loree HM, Lark MW, Libby P. Circumferential stress and matrix metalloproteinase 1 in human coronary atherosclerosis. Implications for plaque rupture. Arterioscler Thromb Vasc Biol. 1996;16:1070–1073.

    PubMed  CAS  Google Scholar 

  • Loree HM, Kamm RD, Stringfellow RG, Lee RT. Effects of fibrous cap thickness on peak circumferential stress in model atherosclerotic vessels. Circ Res. 1992;71:850–858.

    PubMed  CAS  Google Scholar 

  • Loree HM, Tobias BJ, Gibson LJ, Kamm RD, Small DM, Lee RT. Mechanical-properties of model atherosclerotic lesion lipid pools. Arterioscler Thromb. 1994;14:230–234.

    PubMed  CAS  Google Scholar 

  • Nighoghossian N, Derex L, Douek P. The vulnerable carotid artery plaque: current imaging methods and new perspectives. Stroke. 2005;36:2764–2772.

    Article  PubMed  Google Scholar 

  • Oberai AA, Gokhale NH, Doyley MM, Bamber JC. Evaluation of the adjoint equation based algorithm for elasticity imaging. Phys Med Biol. 2004;49:2955–2974.

    Article  PubMed  Google Scholar 

  • Ophir J, Cespedes I, Ponnekanti H, Yazdi Y, Li X. Elastography: a quantitative method for imaging the elasticity of biological tissues. Ultrason Imaging. 1991;13:111–134.

    Article  PubMed  CAS  Google Scholar 

  • Ophir J, Kallel F, Varghese T, Bertrand M, Cespedes I, Ponnekanti H. Elastography: a systems approach. Int J Imaging Syst Technol. 1997;8:89–103.

    Article  Google Scholar 

  • Richardson PD, Davies MJ, Born GV. Influence of plaque configuration and stress distribution on fissuring of coronary atherosclerotic plaques. Lancet. 1989;2:941–944.

    Article  PubMed  CAS  Google Scholar 

  • Rivlin RS. Large elastic deformations of isotropic materials IV. Further developments of the general theory. Philos Trans R Soc Lond. 1948;A 241:379–397.

    Google Scholar 

  • Rogowska J, Patel NA, Fujimoto JG, Brezinski ME. Optical coherence tomographic elastography technique for measuring deformation and strain of atherosclerotic tissues. Heart. 2004;90:556–562.

    Article  PubMed  CAS  Google Scholar 

  • Schaar JA, de Korte CL, Mastik F, Baldewsing R, Regar E, de Feyter P, et al. Intravascular palpography for high-risk vulnerable plaque assessment. Herz. 2003;28:488–495.

    Article  PubMed  Google Scholar 

  • Schaar JA, Regar E, Mastik F, McFadden EP, Saia F, Disco C, et al. Incidence of high-strain patterns in human coronary arteries: assessment with three-dimensional intravascular palpography and correlation with clinical presentation. Circulation. 2004;109:2716–2719.

    Article  PubMed  Google Scholar 

  • Schmitt JM. OCT elastography: imaging microscopic deformation and strain of tissue. Opt Express. 1998;3:199–211.

    Article  CAS  PubMed  Google Scholar 

  • Sinkus R, Tanter M, Catheline S, Lorenzen J, Kuhl C, Sondermann E, et al. Imaging anisotropic and viscous properties of breast tissue by magnetic resonance-elastography. Magn Reson Med. 2005;53:372–387.

    Article  PubMed  CAS  Google Scholar 

  • Tearney GJ, Jang IK, Bouma BE. Optical coherence tomography for imaging the vulnerable plaque. J Biomed Opt. 2006;11:021002.

    Article  PubMed  Google Scholar 

  • Thom T, Haase N, Rosamond W, Howard VJ, Rumsfeld J, Manolio T, et al. Heart disease and stroke statistics-2006 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation. 2006;113:e85–e151.

    Article  PubMed  Google Scholar 

  • Wang RK, Kirkpatrick S, Hinds M. Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time. Appl Phys Lett. 2007;90:164105. (164103 Pages).

    Article  CAS  Google Scholar 

  • Williamson SD, Lam Y, Younis HF, Huang H, Patel S, Kaazempur-Mofrad MR, et al. On the sensitivity of wall stresses in diseased arteries to variable material properties. J Biomech Eng-Trans ASME. 2003;125:147–155.

    Article  CAS  Google Scholar 

  • Yabushita H, Bouma BE, Houser SL, Aretz HT, Jang IK, Schlendorf KH, et al. Characterization of human atherosclerosis by optical coherence tomography. Circulation. 2002;106:1640–1645.

    Article  PubMed  Google Scholar 

  • Yun SH, Tearney GJ, de Boer JF, Iftimia N, Bouma BE. High-speed optical frequency-domain imaging. Opt Express. 2003;11:2953–2963.

    CAS  PubMed  Google Scholar 

  • Yun SH, Tearney GJ, Vakoc BJ, Shishkov M, Oh WY, Desjardins AE, et al. Comprehensive volumetric optical microscopy in vivo. Nat Med. 2006;12:1429–1433.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by the National Institutes of Health (Grant 5-R01-HL70039). Fruitful discussions with Dr. Roger D. Kamm are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad R. Kaazempur Mofrad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karimi, R., Zhu, T., Bouma, B.E. et al. Estimation of Nonlinear Mechanical Properties of Vascular Tissues via Elastography. Cardiovasc Eng 8, 191–202 (2008). https://doi.org/10.1007/s10558-008-9061-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10558-008-9061-0

Keywords

Navigation