Skip to main content
Log in

A Method to Calculate Tissue Impedance Through a Standard Bipolar Pacing Lead

  • Original Paper
  • Published:
Cardiovascular Engineering

Abstract

The transthoracic impedance (T) and its variations may be estimated through the measurement of the electrical impedance between the can and the right ventricular coil of a defibrillation lead. This method may allow the monitoring of fluid overload before a heart failure attack. Aim of this study was to validate in vitro a method to calculate T in case of a standard bipolar pacing lead, by performing 3 measurements: standard unipolar impedance from the tip (Zuni-tip); unipolar impedance from the ring (Zuni-ring); standard bipolar impedance (Zbip). The formula we used is derived from the standard equivalent circuit of a pacing system:

$$\hbox{T} = (\hbox{Zuni-tip}-\hbox{Zbip}+\hbox{Zuni-ring})/2$$

T represents the tissue impedance between the can and the electrodes of the lead. To validate the method we used a saline solution and 3 different pacing leads manufactured by Vitatron (Vitatron BV, Arnhem, The Netherlands): Impulse II (high impedance lead), Crystalline ActFix (screw-in lead), Brilliant S+ (VDD single-lead). The measured values of the saline solution impedance were compared to the values calculated through the formula.

Results

The calculated impedance of the solution, evaluated through the proposed formula, is reliable independently of the electrode used and highly correlated to the corresponding measured values (R > 0.9).

Conclusion

Tissue impedance may be calculated from standard unipolar and bipolar impedance measurements with a standard bipolar pacing lead.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abram WT, Foreman B, Fishel R, et al. Fluid accumulation status trial (FAST). (abstract) Heart Rhythm 2005;2(1S):AB33–3.

    Google Scholar 

  • Charach G, Rabinovich P, Grosskopf I, et al. Transthoracic monitoring of the impedance of the right lung in patients with cardiogenic pulmonary edema. Crit Care Med 2001;29(6):1137–44.

    Article  PubMed  CAS  Google Scholar 

  • Cole CR, Jensen DN, Cho Y, Portzline G, Candinas R, Duru F, Adler S, Nelson L, Condie C, Wilkoff BL. Correlation of impedance minute ventilation with measured minute ventilation in a rate resposnive pacemaker. PACE 2001;24(6):989–93.

    PubMed  CAS  Google Scholar 

  • Fischer W, Ph. Ritter. General technical concepts. In: Cardiac pacing in clinical practice. Springer Edition; 1998. Chapter 2, p. 19–53.

  • McGoon MD, Shapland JE, Salo R, Pederson B, Olive A. The feasibility of utilizing the systolic preejection interval as a determinant of pacing rate. J Am Coll Cardiol 1989;14:1753–8.

    PubMed  CAS  Google Scholar 

  • Nappholtz T, Valenta H, Maloney J, et al. Electrode configurations for a respiratory impedance measurement suitable for rate responsive pacing. PACE 1986;9:960–4.

    PubMed  CAS  Google Scholar 

  • Osypka MJ, Bernstein DP. Electrophysiologic principles and theory of stroke volume determination by thoracic electrical bioimpedance. AACN Clinical Issues: Adv Pract Acute Crit Care 1999;10(3):385–99.

    Article  CAS  Google Scholar 

  • Ovsyshcher I, Zimlichman R, Katz A, Bondy C, Furman S. Measurements of cardiac output by impedance cardiography in pacemaker patients at rest: effects of various atrioventricular delays. J Am Coll Cardiol 1993;21(3):761–7.

    PubMed  CAS  Google Scholar 

  • Ripart A, Mugica J. Electrode-heart interface: definition of the ideal electrode. PACE 1983;6(Pt II):410–21.

    PubMed  CAS  Google Scholar 

  • Rossi P, Rognoni G, Occhetta E, et al. Respiration-dependent ventricular pacing compared with fixed ventricular and atrial–ventricular synchronous pacing: aerobic and hemodynamic variables. J Am Coll Cardiol 1985;6(3):646–52.

    Article  PubMed  CAS  Google Scholar 

  • Rossi P, Plicchi G, Canducci G, et al. Respiration as a reliable physiological sensor for controlling cardiac pacing rate. Br Heart J 1984;51(1):7–14.

    PubMed  CAS  Google Scholar 

  • Ruitter JH, Heemels DK, Van Mechelen R. Adaptive rate pacing controlled by the right ventricular preejection interval: clinical experience with a physiological pacing system. PACE 1992;15:886–94.

    Google Scholar 

  • Schaldach M, Hutten H. Intracardiac impedance to determine sympathetic activity in rate responsive pacing. PACE 1992;15:1778–86.

    PubMed  CAS  Google Scholar 

  • Schaldach M, Ebner E, Hutten H, et al. Right ventricular conductance to establish closed-loop pacing. Eur Heart J 1992;13(Suppl. E):104–12.

    PubMed  Google Scholar 

  • Simon R, Ni Q, Willems R, Hartley JW, Daum DR, Lang D, Ward K, Gill J. Comparison of impedance minute ventilation and direct measured minute ventilation in a rate responsive pacemaker. PACE 2003;26(11):2127–33.

    PubMed  Google Scholar 

  • Stadler R, Wang L, You CM, Chau E, Lam WF, Tang MO, Kong SL, Zhang Q, Lin H, Chan HW, Lau CP. Automated detection of decreases in intrathoracic impedance to predict CHF hospitalization. (abstract) PACE 2003;26:932.

    Google Scholar 

  • Stokes KB, Kay GN. Artificial electrical cardiac stimulation, In: Ellenbogen KA, Kay GN, Wilkoff BL, editers. Clinical cardiac pacing and defibrillation. 2nd ed. Philadelphia: W.B. Saunders Company; 1995. p. 17–52.

  • Tsadock S. The historical evolution of bioimpedance. AACN Clinical Issues: Adv Pract Acute Critic Care 1999;10(3):371–84.

    Article  Google Scholar 

  • de Voogt WG. Pacemaker leads: performance and progress. Am J Cardiol 1999;83:187D–91D

    PubMed  Google Scholar 

  • Wang L, Yu CM, Chau E, Lam WF, Tang MO, Kong SL, Zhang Q, Lin H, Wong M, Fong J, Cheng K, Christensen J, Chan HW, Lau CP. Prediction of CHF hospitalization by ambulatory impedance measurement in CHF patients is feasible using pacemaker or ICD lead systems. (abstract) PACE 2003;26(Pt II):959.

    Google Scholar 

  • Wang L, Lahtinen S, Lentz L, et al. Feasibility of using an implantable system to measure thoracic congestion in an ambulatory chronic heart failure canine model. PACE 2005;28:404–11.

    PubMed  Google Scholar 

  • Wayne A, Kaye GC. Clinical use of intracardiac impedance: current applications and future perspectives. PACE 2001;24(Pt. I):500–6.

    Google Scholar 

  • Yu CM, Wang l, Chau E, et al. Intrathoracic impedance monitoring in patients with heart failure. Circulation 2005;112:841–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. C. Bini.

Appendix

Appendix

$$ {\bf Zbip}={\bf Ztip} + {\bf Zring} + {\bf Rbip} $$
(1)
$$ {\bf Zuni\hbox{-}ring}={\bf T} + {\bf (Rbip}- {\bf Runi)} + {\bf Zring} $$
(2)
$$ {\bf Zuni\hbox{-}tip}={\bf T} + {\bf Runi} + {\bf Ztip} $$
(3)

We can write the same equations in the following way:

$$ \hbox{Ztip}=\hbox{Zbip}-\hbox{Zring}-\hbox{Rbip} $$
(1)
$$ \hbox{Zring}=\hbox{Zuni-ring}-\hbox{T}-(\hbox{Rbip}-\hbox{Runi}) $$
(2)
$$ \hbox{T}=\hbox{Zuni-tip}-\hbox{Runi}-\hbox{Ztip} $$
(3)

Now we can include equation (1) into equation (3):

$$\hbox{T} = \hbox{Zuni-tip}-\hbox{Runi}-\hbox{Zbip} + \hbox{Zring} + \hbox{Rbip} $$
(3)

Now we include equation (2) into equation (3):

$$ \hbox{T} = \hbox{Zuni-tip}+\hbox{Rbip}-\hbox{Runi}-\hbox{Zbip} + \hbox{Zuni-ring}-\hbox{T}-\hbox{Rbip}+\hbox{Runi}\Rightarrow \qquad (3)\quad 2\hbox{T} = \hbox{Zuni-tip}-\hbox{Zbip} +\hbox{Zuni-ring} $$

we can now obtain the value of T as a function of the measurable parameters:

$$ {\bf T} = {\bf (Zuni\hbox{-}tip}-{\bf Zbip} +{\bf Zuni\hbox{-}ring)/2} $$
(6)

Regarding Ztip and Zring the method is similar:

$$ \begin{array}{lll} \hbox{Zring}&=&\hbox{Zuni-ring-} (\hbox{Zuni-tip}-\hbox{Zbip} + \hbox{Zuni-ring})/2 - (\hbox{Rbip} - \hbox{Runi})\\ \quad\Rightarrow&&2\hbox{Zring} = 2\hbox{Zuni-ring}-\hbox{Zuni-tip}+\hbox{Zbip}-\hbox{Zuni-ring}- 2\hbox{Rbip}+2\hbox{Runi}\\ \quad\Rightarrow&&2\hbox{Zring}=\hbox{Zuni-ring}-\hbox{Zuni-tip}+\hbox{Zbip} -2\hbox{Rbip} + 2\hbox{Runi}\\ \quad\Rightarrow&&{\bf (5) Zring} = {\bf (Zbip}-{\bf Zuni\hbox{-}tip}+{\bf Zuni\hbox{-}ring}-{\bf 2Rbip}+{\bf 2Runi)/2.} \end{array} $$
$$ \begin{array}{lll} \hbox{Ztip}&=&\hbox{Zbip}-(\hbox{Zbip}-\hbox{Zuni-tip}+\hbox{Zuni-ring} - 2\hbox{Rbip} +2\hbox{Runi})/2 - \hbox{Rbip}\\ \quad\Rightarrow&&2\hbox{Ztip} = 2\hbox{Zbip}-\hbox{Zbip} + \hbox{Zuni-tip}-\hbox{Zuni-ring}+2\hbox{Rbip}-2\hbox{Runi}- 2\hbox{Rbip}\\ \quad\Rightarrow&&2\hbox{Ztip} = \hbox{Zbip}+\hbox{Zuni-tip}- \hbox{Zuni-ring}-2\hbox{Runi}\\ \quad\Rightarrow&&{\bf (4) Ztip} = {\bf (Zbip} + {\bf Zuni\hbox{-}tip}- {\bf Zuni\hbox{-}ring}- {\bf 2Runi)/2.} \end{array} $$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bini, G.C., Paperini, L., Pauletti, M. et al. A Method to Calculate Tissue Impedance Through a Standard Bipolar Pacing Lead. Cardiovasc Eng 6, 43–50 (2006). https://doi.org/10.1007/s10558-006-9011-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10558-006-9011-7

Keywords

Navigation