Cardiovascular Engineering

, Volume 6, Issue 2, pp 51–70 | Cite as

The Donders Model of the Circulation in Normo- and Pathophysiology

  • Gerrit J. Noordergraaf
  • Johnny T. Ottesen
  • Wil J.P.M. Kortsmit
  • Wil H.A. Schilders
  • Gert J. Scheffer
  • A. Noordergraaf
Original Paper

Abstract

The solution of some recent as well as of long standing problems, unanswerable due to experimental inaccessibility or moral objections are addressed. In this report, a model of the closed human cardiovascular loop is developed. This model, using one set of 88 equations, allows variations from normal resting conditions to exercise, as well as to the ultimate condition of a circulation following cardiac arrest. The principal purpose of the model is to evaluate the continuum of physiological conditions to cardiopulmonary resuscitation (CPR) effects within the circulation.

Within the model, Harvey’s view of the circulation has been broadened to include impedance-defined flow as a unifying concept, and as a mechanism in CPR. The model shows that depth of respiration, sympathetic stimulation of cardiac contractile properties and baroreceptor activity can exert powerful influences on the increase in cardiac output, while heart and respiratory rate increases tend to exert an inhibiting influence, with the pressure and flow curves compatible with accepted references. Impedance-defined flow encompasses both positive and negative effects.

The model also demonstrates the limitations to cardiopulmonary resuscitation caused by external force applied to intrathoracic structures, with effective cardiac output being limited by collapse and sloshing. Stroke volumes from 6 to 51 ml are demonstrated. It shows that the clinical inclination to apply high pressures to intrathoracic structures may not be rewarded with improved net flow.

Keywords

Cardiovascular system modeling Equations Impedance-defined flow Physiology Cardiopulmonary resuscitation (CPR) Circulation 

References

  1. Abel FL, Waldhausen JA. Respiratory and cardiac effects on venous return. Am Heart J 1969;78:266–75.PubMedCrossRefGoogle Scholar
  2. Babbs CF, Voorhees WD, Fitzgerald KR, Holmes HR, Geddes LA. Relationship to blood pressure and flow during CPR to chest compression amplitude: evidence for an effective compression threshold. Ann Emerg Med 1983;12:527–32.PubMedCrossRefGoogle Scholar
  3. Babbs CF, Weaver C, Ralston SH, Geddes LA. Cardiac, thoracic and abdominal pump mechanisms in cardiopulmonary resuscitation: studies in an electrical model of the circulation. Am J Emerg Med 1984; 2:299–08.PubMedCrossRefGoogle Scholar
  4. Babbs CF. Interposed abdominal compression CPR: a comprehensive evidence based review. Resuscitation 2003;59:71–82.PubMedCrossRefGoogle Scholar
  5. Beneken JEW. A mathematical approach to cardio-vascular function: the uncontrolled human system. Ph.D. Dissertation. University of Utrecht, Utrecht, NL. 1965.Google Scholar
  6. Beneken JEW, De Wit B. A physical approach to hemodynamic aspects of the human cardio-vascular system Chap. 1. In: Reeve EB and Guyton A, editors. Physical bases of circulatory transport: regulation and exchange. Philadelphia PA: Saunders; 1967.Google Scholar
  7. Behrenger W, Sterz F, Domanovits H, Hogenberger B, Schoerkhuber W, Frass M, Losert U, Laggner AN. Effects of high impulse CPR on myocardial perfusion during cardiac arrest in pigs. Resuscitation 1997;34:271–9.CrossRefGoogle Scholar
  8. Ben-Haim SA, Saidel GM. Mathematical model of chest wall mechanics: a phenomenological approach. Ann Biomed Eng 1990;28:37–56.CrossRefGoogle Scholar
  9. Beyar R, Goldstein Y. Model studies of the effects of thoracic pressure on the circulation. Ann Biomed Eng 1987;15(3–4):373–83.PubMedGoogle Scholar
  10. Brecher GA. Venous return. New York NY:Grune & Stratton; 1956.Google Scholar
  11. Brouwer R, Wise RA, Hassapoyannes C, Broberger-Barnea B, Permutt S. Effect of lung inflation on lung blood volume and pulmonary venous flow. J Appl Physiol 1985;58(3):954–63.Google Scholar
  12. Caesalpinus A. Quaestionum Medicarum, Liber secundus, Venice I. p. 234, 1593.Google Scholar
  13. Cole RT, Lucas CL, Cascio WE, Johnson TA. A LabVIEWTM model incorporating an open-loop arterial impedance and a closed loop circulatory system. Ann Biomed Engin 2005; 33(11):1555–73.CrossRefGoogle Scholar
  14. Criley M, Blaufuss AH, Kissel GL. Cough-induced cardiac compression: self-administered form of cardiopulmonary resuscitation. JAMA 1976; 236:1246–50.PubMedCrossRefGoogle Scholar
  15. Defares JG, Hara HH, Osborn JJ, and McLeod J Theoretical analysis and computer simulation of the circulation with special reference to the Starling properties of the ventricles. In: Noordergraaf A, Jager G and Westerhof N, editors. Circulatory Analog Computers. Amsterdam NL:North-Holland Publ.; 1963. pp. 91–122.Google Scholar
  16. Dick DE, Hillestad RJ, Rideout VC. A computer study on the effect of circulatory system defects. Proc. Ann. Conf. Eng. Med. Biol. p. 89, 1966.Google Scholar
  17. Donders FC. Physiologie des Menschen, Hirzel, Leipzig. 1856.Google Scholar
  18. Frasch HF, Kresch JY, Noordergraaf A. Interpretation of coronary vascular perfusion Ch. 7. In: Drzewiecki G and Li JJ-K, editors. Analysis and assessment of cardiovascular function. New York, NY: Springer; 1998.Google Scholar
  19. Grodins FS. Integrative cardiovascular physiology: a mathematical synthesis of cardiac and blood vessel hemodynamics. Quart Rev Biol 1959;34:93–116.PubMedCrossRefGoogle Scholar
  20. Guyton AC. Textbook of medical physiology. Philadelphia PA: Saunders; 1963.Google Scholar
  21. Guyton AC, Coleman TG, Granger HJ. Circulation: overall regulation. Ann Rev Physiol 1972;34:13–46.CrossRefGoogle Scholar
  22. Ha RR, Qian J, Ware DL, Zwischenberger B, Bidani A, Clark JW, Jr. An integrative cardiovascular model of the standing and reclining sheep. Cardiovasc Eng 2005;5(2):53–76.CrossRefGoogle Scholar
  23. Halperin HR, Tsitlik JE, Beyar R, Chandra N, Geurci AD. Intrathoracic pressure fluctuations move blood during CPR: comparison of hemodynamic data with predictions from a mathematical model. Ann Biomed Eng 1987; 15:385–403.PubMedGoogle Scholar
  24. Handley AJ, Koster R, Monsieurs K, Perkins GD, Davies S, Bossaert L. European Resuscitation Council guidelines for resuscitation 2005 (Section 2: adult basic life support and use of automated external defibrillators). Resuscitation 2005; 67s1:s7–s23.CrossRefGoogle Scholar
  25. Harvey W. Exercitatio Anatomica, De Motu Cordis et Sanguinis in Animalibus. Frankford D. 1628.Google Scholar
  26. Hill WS, Polleri JO, Matteo AL. Essay on a hydrodynamic analysis of the blood circulation. U of Montevideo, Montevideo UR. 1958.Google Scholar
  27. Jochim KE. Arterial pulses simulated in electrical analogues of the circulatory system. Proc Fed Am Soc Exp Biol 1948; 7:62.Google Scholar
  28. Karreman G, Weygandt CN. Theoretical control aspects of the circulation, Chap. 52. In: Baan J, Noordergraff A and Raines J, editors. Cardiovascular system dynamics. Cambridge MA: MIT Press; 1978.Google Scholar
  29. Klouche K, Weil MH, Sun S, Povoas HP, Kamohara T, Bisera J. Evolution of the stone heart after prolonged cardiac arrest. Chest 2002;122:1006.Google Scholar
  30. Kouwenhoven WB, Jude JR, Knickerbocker GG. Closed chest cardiac massage. JAMA 1960; 173:1064–7.PubMedGoogle Scholar
  31. Liebau G. Möglichkeit der Förderung des Blutes im Herz- und Gefäszsystems ohne Herz- und Venenklappenfunktion, Verh. deutsch. Ges. Kreislff., 22. Tagung, Seite 354–359, 1956.Google Scholar
  32. Lipowsky HH, Kovalscheck S, Zweifach BW. The distribution of bood rheological parameters in the microcirculation. Circ Res 1978; 43:738–49.PubMedGoogle Scholar
  33. Marey EJ. Physiologie médicale de la circulation du sang basée sur l’étude graphique des mouvements du cœur et du pouls artériel. Delahaye, Paris FR. 1863.Google Scholar
  34. Mayrovitz HN, Wiedeman MP, Noordergraaf A. Interaction in the microcirculation. Ch. 21. Baan J, Noordergraff A and Raines J, editors. Cardiovascular system dynamics. Cambridge MA: MIT Press; 1978.Google Scholar
  35. Melbin J, Detweiler DK, Riffle RA, Noordergraaf A. Coherence of cardiac output with rate changes. Am J Physiol 243 (Heart Circ. Physiol. 12) H499–H504, 1982.Google Scholar
  36. McHale NG, Roddie IC. The effect of transmural pressure on pumping ability in isolated bovine lymphatic vessels. J Physiol 1976;261:255–69.PubMedGoogle Scholar
  37. Moreno AH. Dynamics of pressure in the central veins. Chap. 28. In: Baan J, Noordergraff A and Raines J, editors. Cardiovascular system dynamics. Cambridge MA: MIT Press; 1978.Google Scholar
  38. Moser M, Huang JW, Schwarz GS, Kenner T, Noordergraaf A. Impedance-defined flow. Generalisation of William Harvey’s concept of the circulation-370 years later. Int J Cardiovasc Med Sci 1998;1:205–11.Google Scholar
  39. Mukkamala R. A forward model-based analysis of cardiovascular system identification methods. PhD dissertation, Cambridge MA: MIT Press; 2000.Google Scholar
  40. Noordergraaf A. Hemodynamics. Chap. 5. In: Schwan HP, editor, Biological engineering. New York NY: McGraw-Hill; 1969.Google Scholar
  41. Noordergraaf A. Circulatory system dynamics. New York, NY: Academic Press; 1978.Google Scholar
  42. Noordergraaf A. Blood in motion. New York, NY: Springer Verlag; 2006.Google Scholar
  43. Noordergraaf GJ, Dijkema TJ, Kortsmit WJPM, Schilders WHA, Scheffers GJ, Noordergraaf A. Modeling in cardiopulmonary resuscitation: pumping the heart. Cardiovasc Eng 2005;5(3):105–18.CrossRefGoogle Scholar
  44. Noordergraaf GJ, Tilborg GFAJB, Schoonen JAP, Ottesen J, Noordergraaf A. Thoracic CT-scans and cardiovascular models: the effect of external force. Int J Cardiovasc Med Sci 2005;5(1):1–7.Google Scholar
  45. Osborn JJ, Hoehne W, Badia W. Ventricular function in the basic regulation of the circulation: Studies with a mechanical analog Chap 2. In: Reeve EB and Guyton A, editors. Physical bases of circulatory transport: regulation and exchange. Philadelphia PA: Saunders; 1967.Google Scholar
  46. Ottesen JT, Noordergraaf A. Donders vs Harvey, Proc IEEE 26th Ann. Northeast. Bioeng. Conf. Enderle and Macfarlane editors. pp. 43–44, 2000.Google Scholar
  47. Palladino JL, Drzewiecki GM, Noordergraaf A. In: Bronzino JD, editor. Modeling strategies and cardiovascular dynamics: CRC handbook of biomedical engineering, 3rd ed. Baton Rouge FL: IEEE Press; 2006.Google Scholar
  48. Palladino JL, Ribeiro LC and Noordergraaf A. Human circulatory system model based on Frank’s mechanism. In: Ottesen JT, Danielsen M, editors. Mathematical modelling in medicine. Washington DC: IOS Press; 2000a.Google Scholar
  49. Palladino JL, Drzewiecki GM, Noordergraaf A. In: Bronzino JD, editors. Modeling strategies and cardiovascular dynamics: Chap. 158. In: The biomedical engineering handbook, 2nd ed. CRC Press, Vol. II, Boca Raton, FL. 2000b.Google Scholar
  50. Paradis NA, Martin GB, Goetting MG, Roosenberg JM, Rivers EP, Appleton TJ, Nowak RM. Simultaneous aortic, jugular bulb and right atrial pressures during cardiopulmonary resuscitation in humans: insights into mechanisms. Circ 1989;61:361–8.Google Scholar
  51. Patterson SW, Starling EH. On the mechanical factors which determine the output of the ventricles. J Physiol 1914;48:357–79.PubMedGoogle Scholar
  52. Rothe CF, Selkurt EE. A model of the cardiovascular system for effective teaching. J Appl Physiol 1962;17:156–8.PubMedGoogle Scholar
  53. Scharf SM, Brown R, Warner KG, Khuri S. Intrathoracic pressures and left ventricular configuration with respiratory man euvers. J Applied Phys 1989;66(1):481–91.Google Scholar
  54. Shaw DP, Rutherford JS, Williams MJ. The mechanism of blood flow in cardiopulmonary resuscitation—introducing the lung pump. Resuscitation 1997;35(3):255–8.PubMedCrossRefGoogle Scholar
  55. Tsitlik JE, Weisfeldt ML, Chandra N, Effron MB, Halperin HR, Levin HR. Elastic properties of the human chest during cardiopulmonary resuscitation. Crit Care Med 1983; 11:685–91.PubMedGoogle Scholar
  56. Vadot L. Examen de problèmes d’hémodynamique au moyen d’une analogie electrique. Application particuliere aux malformations cardiaques. Path Biol 1962; 10:1499–509.Google Scholar
  57. Warner HR. The use of an analog computer for analysis of control mechanisms in the circulation. Proc IRE 1959; 47:1913–6.Google Scholar
  58. Weber EH. Ueber die Anwendung der Wellenlehre auf die Lehre vom Kreislaufe des Blutes und ins besondere auf die Pulslehre. Ber. Math. Phys. Cl. Koenigl. Saechs. Ges. Wiss. 1850.Google Scholar
  59. Westerhof N, Bosman F, Vries CJ, de, Noordergraaf A. Analog studies of the human arterial tree. J Biomech 1969;2:121–43.PubMedCrossRefGoogle Scholar
  60. Westerhof N, Noordergraaf A. Reduced models of systemic arteries. Proc. 8th Int. Conf. Med. Eng. Chicago. Session 6-2, 1969.Google Scholar
  61. Yin CP, Cohen JM, Tsitlik J, Weisfeldt ML (1979) Arterial resistance to collapse as a determinant of peripheral flow resulting from high intrathoracic pressures. Circ 59, 60(Suppl. II):196.Google Scholar
  62. Yuan R, Shan Y, Zhu S. Circulating mechanism of the ‘pure’ venous flap: direct observation of the microcirculation. J Reconstr Microsurg 1998;14(3):147–52.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Gerrit J. Noordergraaf
    • 1
  • Johnny T. Ottesen
    • 2
  • Wil J.P.M. Kortsmit
    • 3
  • Wil H.A. Schilders
    • 3
  • Gert J. Scheffer
    • 4
  • A. Noordergraaf
    • 5
  1. 1.Department of Anesthesia and ResuscitationSt Elisabeth HospitalTilburgThe Netherlands
  2. 2.Department of Mathematics and PhysicsUniversity of RoskildeRoskildeDenmark
  3. 3.Department of Mathematics and InformaticsTechnical UniversityEindhovenThe Netherlands
  4. 4.Department of AnesthesiologyUniversity Medical Center NijmegenNijmegenThe Netherlands
  5. 5.Cardiovascular Studies UnitUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations