Skip to main content

Advertisement

Log in

Circ_0026218 ameliorates oxidized low-density lipoprotein-induced vascular endothelial cell dysfunction by regulating miR-188-3p/TLR4/NF-κB pathway

  • Original Article
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Background

Circular RNAs (circRNAs) have shown important regulatory roles in cardiovascular diseases, including atherosclerosis (AS). However, the role and mechanism of circ_0026218 in AS remain unclear.

Methods

The cell model of AS in vitro was established by stimulating human umbilical vein endothelial cells (HUVECs) with oxidized low-density lipoprotein (ox-LDL). In addition, circ_0026218, microRNA-188-3p (miR-188-3p), and toll-like receptor 4 (TLR4) expression was determined via real-time quantitative polymerase chain reaction (RT-qPCR) in serum samples from AS patients and healthy volunteers. Cell proliferation was assessed using Cell Counting Kit-8 (CCK-8) assay and 5-ethynyl-2’-deoxyuridine (EdU) assay. Cell apoptosis was measured using flow cytometry. The inflammatory response was assessed using enzyme-linked immunosorbent assay (ELISA). Oxidative stress level was assessed using corresponding kits. Nitric oxide (NO) level was examined using NO detection assay. The interaction between miR-188-3p and circ_0026218 or TLR4 was determined via dual-luciferase reporter, RNA immunoprecipitation (RIP), and RNA pull-down assays. Exosomes were observed using transmission electron microscopy (TEM). The size distribution of exosomes was analyzed using nanoparticle tracking analysis (NTA).

Results

Ox-LDL treatment caused HUVEC dysfunction by inhibiting cell proliferation and promoting apoptosis, inflammation, and oxidative stress. Circ_0026218 was upregulated in AS serum samples and ox-LDL-treated HUVECs. Knockdown of circ_0026218 attenuated ox-LDL-induced dysfunction in HUVECs. MiR-188-3p acted as a target of circ_0026218, and miR-188-3p downregulation reversed the suppression role of circ_0026218 knockdown on ox-LDL-induced HUVEC disorder. TLR4 was a target of miR-188-3p, and miR-188-3p overexpression alleviated ox-LDL-induced dysfunction in HUVECs by targeting TLR4. Circ_0026218 could deregulate the TLR4/NF-κB pathway by sponging the miR-188-3p. Importantly, circ_0026218 was overexpressed in exosomes from ox-LDL-treated HUVECs and could be delivered via exosomes.

Conclusion

Circ_0026218 knockdown attenuated ox-LDL-induced dysfunction in HUVECs via regulating miR-188-3p/TLR4/NF-κB pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Weber C, Noels H. Atherosclerosis: current pathogenesis and therapeutic options. Nat Med. 17:1410–22.

  2. Santovito D, Weber C. Atherosclerosis revisited from a clinical perspective: still an inflammatory disease? Thromb Haemost. 2017;117:231–7.

    Article  PubMed  Google Scholar 

  3. Gimbrone MA Jr, García-Cardeña G. Endothelial cell sysfunction and the pathobiology of atherosclerosis. Circ Res. 2016;118:620–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pirillo A, Norata GD, Catapano AL. LOX-1, OxLDL, and atherosclerosis. Mediators Inflamm. 2013;2013:152786.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Gao S, Zhao D, Wang M, et al. Association between circulating oxidized LDL and atherosclerotic cardiovascular disease: a meta-analysis of observational studies. Can J Cardiol. 2017;33:1624–32.

    Article  PubMed  Google Scholar 

  6. Takenaka T, Takahashi K, Kobayashi T, Oshima E, Iwasaki S, Suzuki H. Oxidized low density lipoprotein (Ox-LDL) as a marker of atherosclerosis in hemodialysis (HD) patients. Clin Nephrol. 2002;58:33–7.

    Article  CAS  PubMed  Google Scholar 

  7. Liu J, Liu T, Wang X, He A. Circles reshaping the RNA world: from waste to treasure. Mol Cancer. 2017;16:58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen LL. The biogenesis and emerging roles of circular RNAs. Nat Rev Mol Cell Biol. 2016;17:205–11.

    Article  CAS  PubMed  Google Scholar 

  9. Arnaiz E, Sole C, Manterola L, Iparraguirre L, Otaegui D, Lawrie CH. CircRNAs and cancer: Biomarkers and master regulators. Semin Cancer Biol. 2019;58:90–9.

    Article  CAS  PubMed  Google Scholar 

  10. Vo JN, Cieslik M, Zhang Y, Shukla S, Xiao L, Zhang Y, et al. The landscape of circular RNA in cancer. Cell. 2019;176:869–81.e13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kong P, Yu Y, Wang L, et al. circ-Sirt1 controls NF-κB activation via sequence-specific interaction and enhancement of SIRT1 expression by binding to miR-132/212 in vascular smooth muscle cells. Nucleic Acids Res. 2019;47:3580–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Altesha MA, Ni T, Khan A, Liu K, Zheng X. Circular RNA in cardiovascular disease. J Cell Physiol. 2019;234:5588–600.

    Article  CAS  PubMed  Google Scholar 

  13. Huang HS, Huang XY, Yu HZ, Xue Y, Zhu PL. Circular RNA circ-RELL1 regulates inflammatory response by miR-6873-3p/MyD88/NF-κB axis in endothelial cells. Biochem Biophys Res Commun. 2020;525:512–9.

    Article  CAS  PubMed  Google Scholar 

  14. Gu Y, Ma X, Li J, Ma Y, Zhang Y. Identification of candidate targets for the diagnosis and treatment of atherosclerosis by bioinformatics analysis. Am J Transl Res. 2021;13:4137–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Han B, Chao J, Yao H. Circular RNA and its mechanisms in disease: from the bench to the clinic. Pharmacol Ther. 2018;187:31–44.

    Article  CAS  PubMed  Google Scholar 

  16. Juźwik CA, Drake SS, Zhang Y, et al. microRNA dysregulation in neurodegenerative diseases: A systematic review. Prog Neurobiol. 2019;182:101664.

    Article  PubMed  Google Scholar 

  17. Andreou I, Sun X, Stone PH, Edelman ER, Feinberg MW. miRNAs in atherosclerotic plaque initiation, progression, and rupture. Trends Mol Med. 21:307–18.

  18. Peng W, Li S, Chen S, Yang J, Sun Z. Hsa_circ_0003204 knockdown weakens Ox-LDL-Induced cell injury by regulating miR-188-3p/TRPC6 axis in human carotid artery endothelial cells and THP-1 cells. Front Cardiovasc Med. 2021;8:731890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gu S, Jin L, Zhang F, Sarnow P, Kay MA. Biological basis for restriction of microRNA targets to the 3' untranslated region in mammalian mRNAs. Nat Struct Mol Biol. 2009;16:144–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. de Vicente LG, Pinto AP, da Rocha AL, Pauli JR, de Moura LP, Cintra DE, et al. Role of TLR4 in physical exercise and cardiovascular diseases. Cytokine. 2020;136:155273.

    Article  PubMed  Google Scholar 

  21. Hansen TB, Jensen TI, Clausen BH, et al. Natural RNA circles function as efficient microRNA sponges. Nature. 2013;495:384.

    Article  CAS  PubMed  Google Scholar 

  22. Galkina E, Ley K. Immune and inflammatory mechanisms of atherosclerosis (*). Annu Rev Immunol. 2009;27:165–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tousoulis D, Simopoulou C, Papageorgiou N, et al. Endothelial dysfunction in conduit arteries and in microcirculation. Novel therapeutic approaches. Pharmacol Ther. 2014;144:253–67.

    Article  CAS  PubMed  Google Scholar 

  24. Davignon J, Ganz P. Role of endothelial dysfunction in atherosclerosis. Circulation. 2004;109:Iii27–32.

    Article  PubMed  Google Scholar 

  25. Park HJ, Zhang Y, Georgescu SP, Johnson KL, Kong D, Galper JB. Human umbilical vein endothelial cells and human dermal microvascular endothelial cells offer new insights into the relationship between lipid metabolism and angiogenesis. Stem Cell Rev. 2006;2:93–102.

    Article  CAS  PubMed  Google Scholar 

  26. Zhang Y, Zhang X-O, Chen T, et al. Circular intronic long noncoding RNAs. Mol Cell. 2013;51:792–806.

    Article  CAS  PubMed  Google Scholar 

  27. Ng WL, Mohd Mohidin TB, Shukla K. Functional role of circular RNAs in cancer development and progression. RNA Biol. 2018;15:995–1005.

    PubMed  PubMed Central  Google Scholar 

  28. Wan H, You T, Luo W. Circ_0003204 regulates cell growth, oxidative stress, and inflammation in ox-LDL-induced vascular endothelial cells via regulating miR-942-5p/HDAC9 axis. Front Cardiovasc Med. 2021;8:646832.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Chen W, Guo S, Li X, Song N, Wang D, Yu R. The regulated profile of noncoding RNAs associated with inflammation by tanshinone IIA on atherosclerosis. J Leukoc Biol. 2020;108:243–52.

    Article  CAS  PubMed  Google Scholar 

  30. Wang G, Li Y, Liu Z, et al. Circular RNA circ_0124644 exacerbates the ox-LDL-induced endothelial injury in human vascular endothelial cells through regulating PAPP-A by acting as a sponge of miR-149-5p. Mol Cell Biochem. 2020;471:51–61.

    Article  CAS  PubMed  Google Scholar 

  31. Zhang C, Wang L, Shen Y. Circ_0004104 knockdown alleviates oxidized low-density lipoprotein-induced dysfunction in vascular endothelial cells through targeting miR-328-3p/TRIM14 axis in atherosclerosis. BMC Cardiovasc Disord. 2021;21:207.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Pei J, Zhang J, Yang X, et al. TMED3 promotes cell proliferation and motility in breast cancer and is negatively modulated by miR-188-3p. Cancer Cell Int. 2019;19:75.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Luo Z, Fan Y, Liu X, et al. MiR-188-3p and miR-133b suppress cell proliferation in human hepatocellular carcinoma via post-transcriptional suppression of NDRG1. Technol Cancer Res Treat. 2021;20:15330338211033074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mi S, Wang P, Lin L. miR-188-3p inhibits vascular smooth muscle cell proliferation and migration by targeting fibroblast Ggrowth factor 1 (FGF1). Med Sci Monit. 2020;26:e924394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang XF, Yang Y, Yang XY, Tong Q. MiR-188-3p upregulation results in the inhibition of macrophage proinflammatory activities and atherosclerosis in ApoE-deficient mice. Thromb Res. 2018;171:55–61.

    Article  CAS  PubMed  Google Scholar 

  36. Fabian MR, Sonenberg N, Filipowicz W. Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem. 2010;79:351–79.

    Article  CAS  PubMed  Google Scholar 

  37. Yang K, He YS, Wang XQ, et al. MiR-146a inhibits oxidized low-density lipoprotein-induced lipid accumulation and inflammatory response via targeting toll-like receptor 4. FEBS Lett. 2011;585:854–60.

    Article  CAS  PubMed  Google Scholar 

  38. Du XJ, Lu JM. MiR-135a represses oxidative stress and vascular inflammatory events via targeting toll-like receptor 4 in atherogenesis. J Cell Biochem. 2018;119:6154–61.

    Article  CAS  PubMed  Google Scholar 

  39. Yang K, Xue Y, Gao X. LncRNA XIST promotes atherosclerosis by regulating miR-599/TLR4 axis. Inflammation. 2021;44:965–73.

    Article  CAS  PubMed  Google Scholar 

  40. Lawrence T. The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb Perspect Biol. 2009;1:a001651.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Balzan S, Lubrano V. LOX-1 receptor: a potential link in atherosclerosis and cancer. Life Sci. 2018;198:79–86.

    Article  CAS  PubMed  Google Scholar 

  42. Cocucci E, Meldolesi J. Ectosomes and exosomes: shedding the confusion between extracellular vesicles. Trends Cell Biol. 2015;25:364–72.

    Article  CAS  PubMed  Google Scholar 

  43. Vlassov AV, Magdaleno S, Setterquist R, Conrad R. Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochim Biophys Acta. 2012;1820:940–8.

    Article  CAS  PubMed  Google Scholar 

  44. Ge R, Tan E, Sharghi-Namini S, Asada HH. Exosomes in Cancer Microenvironment and Beyond: have we overlooked these extracellular messengers? Cancer Microenviron. 2012;5:323–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Li Y, Feng W, Kong M, et al. Exosomal circRNAs: a new star in cancer. Life Sci. 2021;269:119039.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Funding was provided by Natural Science Foundation of Xinjiang Uygur Autonomous Region (2018D01C219).

Author information

Authors and Affiliations

Authors

Contributions

Xiangyang Zhang designed and performed the research; Zhaoxia Yu and Tieliang Zhang analyzed the data; Jing Liu wrote the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Tieliang Zhang.

Ethics declarations

Ethics approval and consent to participate

Written informed consents were obtained from all participants, and this study was permitted by the Ethics Committee of First Affiliated Hospital of Xinjiang Medical University.

Consent for publication

Not applicable.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

Knockdown of circ_0026218 abolished ox-LDL-induced NO level repression in HUVECs. HUVECs were divided into four groups: Control (without ox-LD), ox-LDL (50 μg/mL), ox-LDL+si-NC, and ox-LDL+si-circ_0026218. NO level was assessed in HUVECs using NO detection assay (one-way ANOVA). **P < 0.01, ***P < 0.001. (PNG 13 kb)

High resolution image (TIF 33 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Zhang, X., Yu, Z. et al. Circ_0026218 ameliorates oxidized low-density lipoprotein-induced vascular endothelial cell dysfunction by regulating miR-188-3p/TLR4/NF-κB pathway. Cardiovasc Drugs Ther 38, 263–277 (2024). https://doi.org/10.1007/s10557-022-07416-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-022-07416-x

Keywords

Navigation