Skip to main content

Advertisement

Log in

Disulfiram protects against abdominal aortic aneurysm by ameliorating vascular smooth muscle cells pyroptosis

  • Original Article
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Purpose

Recent studies demonstrated that pyroptosis is involved in abdominal aortic aneurysm (AAA) progression, suggesting a potential target for AAA treatment. This study aimed to identify if disulfiram could inhibit angiotensin II (Ang II)-induced vascular smooth muscle cells (VSMCs) damage, thereby exerting protective effects on AAA.

Methods

The AAA mouse model was established by continuous subcutaneous Ang II infusion for 28 days. Then aortic tissue of the mice was isolated and subjected to RNA sequencing, qRT-PCR, Western blotting, and immunofluorescence staining. To explore the therapeutic effect of disulfiram, mice were orally administered disulfiram (50 mg/kg/day) or vehicle for 28 days accompanied with Ang II infusion. Pathological changes in aortic tissues were measured using microultrasound imaging analysis and histopathological analysis. In addition, inflammatory response, pyroptosis, and oxidative stress damage were examined in mouse aortic vascular smooth muscle (MOVAS) cells stimulated with Ang II in vitro.

Results

The RNA sequencing and bioinformatic analysis results suggested that pyroptosis- and inflammation-related genes were significantly upregulated in AAA, consistent with the results of qRT-PCR and Western blotting. Most importantly, the therapeutic effect of disulfiram on AAA was identified in our study. First, disulfiram administration significantly attenuated Ang II-induced inflammation, pyroptosis, and oxidative stress in VSMCs, which is associated with the inhibition of the NF-κB-NLRP3 pathway. Second, in-vivo studies revealed that disulfiram treatment reduced AAA formation and significantly ameliorated collagen deposition and elastin degradation in the aortic wall.

Conclusion

Our findings suggest that disulfiram has a novel protective effect against AAA by inhibiting Ang II-induced VSMCs pyroptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data in the current study are available from the corresponding author upon reasonable request.

References

  1. Brangsch J, Reimann C, Collettini F, Buchert R, Botnar RM, Makowski MR. Molecular imaging of abdominal aortic aneurysms. Trends Mol Med. 2017;23(2):150–64.

    Article  PubMed  Google Scholar 

  2. Quintana RA, Taylor WR. Cellular mechanisms of aortic aneurysm formation. Circ Res. 2019;124(4):607–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Guo DC, Papke CL, He R, Milewicz DM. Pathogenesis of thoracic and abdominal aortic aneurysms. Ann N Y Acad Sci. 2006;1085:339–52.

    Article  CAS  PubMed  Google Scholar 

  4. Hu C, Zhang X, Teng T, Ma ZG, Tang QZ. Cellular senescence in cardiovascular diseases: a systematic review. Aging Dis. 2022;13(1):103–28.

    Article  PubMed  PubMed Central  Google Scholar 

  5. López-Candales A, Holmes DR, Liao S, Scott MJ, Wickline SA, Thompson RW. Decreased vascular smooth muscle cell density in medial degeneration of human abdominal aortic aneurysms. Am J Pathol. 1997;150(3):993–1007.

    PubMed  PubMed Central  Google Scholar 

  6. Li H, Xu H, Wen H, et al. Lysyl hydroxylase 1 (LH1) deficiency promotes angiotensin II (Ang II)-induced dissecting abdominal aortic aneurysm. Theranostics. 2021;11(19):9587–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhou T, Wang Q, Phan N, et al. Identification of a novel class of RIP1/RIP3 dual inhibitors that impede cell death and inflammation in mouse abdominal aortic aneurysm models. Cell Death Dis. 2019;10(3):226.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Chakraborty A, Li Y, Zhang C, Li Y, LeMaire SA, Shen YH. Programmed cell death in aortic aneurysm and dissection: A potential therapeutic target. J Mol Cell Cardiol. 2022;163:67–80.

    Article  CAS  PubMed  Google Scholar 

  9. Broz P, Dixit VM. Inflammasomes: mechanism of assembly, regulation and signalling. Nat Rev Immunol. 2016;16(7):407–20.

    Article  CAS  PubMed  Google Scholar 

  10. Newton K, Dixit VM, Kayagaki N. Dying cells fan the flames of inflammation. Science. 2021;374(6571):1076–80.

    Article  CAS  PubMed  Google Scholar 

  11. Baroja-Mazo A, Martin-Sanchez F, Gomez AI, et al. The NLRP3 inflammasome is released as a particulate danger signal that amplifies the inflammatory response. Nat Immunol. 2014;15(8):738–48.

    Article  CAS  PubMed  Google Scholar 

  12. Broz P, Pelegrin P, Shao F. The gasdermins, a protein family executing cell death and inflammation. Nat Rev Immunol. 2020;20(3):143–57.

    Article  CAS  PubMed  Google Scholar 

  13. Fu H, Shen QR, Zhao Y, et al. Activating alpha7nAChR ameliorates abdominal aortic aneurysm through inhibiting pyroptosis mediated by NLRP3 inflammasome. Acta Pharmacol Sin. 2022; https://doi.org/10.1038/s41401-022-00876-9.

  14. Xiong JM, Liu H, Chen J, Zou QQ, Wang YY, Bi GS. Curcumin nicotinate suppresses abdominal aortic aneurysm pyroptosis via lncRNA PVT1/miR-26a/KLF4 axis through regulating the PI3K/AKT signaling pathway. Toxicol Res (Camb). 2021;10(3):651–61.

    Article  PubMed  Google Scholar 

  15. Kranzler HR, Soyka M. Diagnosis and pharmacotherapy of alcohol use disorder: a review. JAMA. 2018;320(8):815–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Skrott Z, Mistrik M, Andersen KK, et al. Alcohol-abuse drug disulfiram targets cancer via p97 segregase adaptor NPL4. Nature. 2017;552(7684):194–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cvek B. Nonprofit drugs as the salvation of the world’s healthcare systems: the case of Antabuse (disulfiram). Drug Discov Today. 2012;17(9-10):409–12.

    Article  PubMed  Google Scholar 

  18. Hu JJ, Liu X, Xia S, et al. FDA-approved disulfiram inhibits pyroptosis by blocking gasdermin D pore formation. Nat Immunol. 2020;21(7):736–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Golledge J, Krishna SM, Wang Y. Mouse models for abdominal aortic aneurysm. Br J Pharmacol. 2022;179(5):792–810.

    Article  CAS  PubMed  Google Scholar 

  20. Das S, Garg T, Chopra S, Dasgupta A. Repurposing disulfiram to target infections caused by non-tuberculous mycobacteria. J Antimicrob Chemother. 2019;74(5):1317–22.

    Article  CAS  PubMed  Google Scholar 

  21. Huang X, Sun P, Qin Y, et al. Disulfiram attenuates MCMV-Induced pneumonia by inhibition of NF-κB/NLRP3 signaling pathway in immunocompromised mice. Int Immunopharmacol. 2022;103:108453.

    Article  CAS  PubMed  Google Scholar 

  22. Ortega R, Collado A, Selles F, et al. SGLT-2 (sodium–glucose cotransporter 2) inhibition reduces ang ii (angiotensin ii)-induced dissecting abdominal aortic aneurysm in ApoE (apolipoprotein e) knockout mice. Arterioscler Thromb Vasc Biol. 2019;39(8):1614–28.

    Article  CAS  PubMed  Google Scholar 

  23. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Patel MN, Carroll RG, Galvan-Pena S, et al. Inflammasome priming in sterile inflammatory disease. Trends Mol Med. 2017;23(2):165–80.

    Article  CAS  PubMed  Google Scholar 

  25. Majumder S, Pushpakumar S, Juin SK, Jala VR, Sen U. Toll-like receptor 4 mutation protects the kidney from Ang-II-induced hypertensive injury. Pharmacol Res. 2022;175:106030.

    Article  CAS  PubMed  Google Scholar 

  26. Liu Z, Gan L, Xu Y, et al. Melatonin alleviates inflammasome-induced pyroptosis through inhibiting NF-kappaB/GSDMD signal in mice adipose tissue. J Pineal Res. 2017;63(1):e12414.

  27. Anagnostakos J, Lal BK. Abdominal aortic aneurysms. Prog Cardiovasc Dis. 2021;65:34–43.

    Article  PubMed  Google Scholar 

  28. Kumar S, Boon RA, Maegdefessel L, Dimmeler S, Jo H. Role of noncoding RNAs in the pathogenesis of abdominal aortic aneurysm. Circ Res. 2019;124(4):619–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yuan Z, Lu Y, Wei J, Wu J, Yang J, Cai Z. Abdominal aortic aneurysm: roles of inflammatory cells. Front Immunol. 2021;11:609161.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Barallobre-Barreiro J, Loeys B, Mayr M, Rienks M, Verstraeten A, Kovacic JC. Extracellular matrix in vascular disease, part 2/4: JACC Focus Seminar. J Am Coll Cardiol. 2020;75(17):2189–203.

    Article  CAS  PubMed  Google Scholar 

  31. Christgen S, Tweedell RE, Kanneganti TD. Programming inflammatory cell death for therapy. Pharmacol Ther. 2022;232:108010.

    Article  CAS  PubMed  Google Scholar 

  32. Huang Y, Xu W, Zhou R. NLRP3 inflammasome activation and cell death. Cell Mol Immunol. 2021;18(9):2114–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang Y, Kanneganti TD. From pyroptosis, apoptosis and necroptosis to PANoptosis: a mechanistic compendium of programmed cell death pathways. Comput Struct Biotechnol J. 2021;19:4641–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zheng X, Chen W, Gong F, Chen Y, Chen E. The role and mechanism of pyroptosis and potential therapeutic targets in sepsis: a review. Front Immunol. 2021;12:711939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yang B, Shi J. Developing new cancer nanomedicines by repurposing old drugs. Angew Chem Int Ed Eng. 2020;59(49):21829–38.

    Article  CAS  Google Scholar 

  36. Bernier M, Mitchell SJ, Wahl D, et al. Disulfiramtreatment normalizes body weight in obese mice. Cell Metab. 2020;32(2):203–14.e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by grants from the National Natural Science Foundation of China (82070477, 81930007), Science and Technology Commission of Shanghai Municipality (19ZR1430400, 201409005200), Shanghai Hospital Development Center (SHDC12019X12), Shanghai “Rising Stars of Medical Talent” Youth Development Program “Outstanding Youth Medical Talents” (SHWSRS(2021)_099) and Shanghai Municipal Key Clinical Specialty (shslczdzk06204).

Author information

Authors and Affiliations

Authors

Contributions

S.D. conceived and supervised the study. F.L. and L.W. wrote the original draft of the manuscript. S.D. and J.P. revised the manuscript. F.L., L.W., Z.N.W., G.Q.L., Y.X.Q., and X.J.H. performed the experiments and analyzed the data.

Corresponding authors

Correspondence to Song Ding or Jun Pu.

Ethics declarations

Competing interest

The authors of this manuscript declare no conflicts of interest.

Ethics approval

Experimental protocols were approved by the Animal Ethics Committee of Shanghai Jiao Tong University.

Consent to publish

All authors read and approved the final manuscript and submitted it for consideration for publication.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, F., Wang, L., Wu, Z. et al. Disulfiram protects against abdominal aortic aneurysm by ameliorating vascular smooth muscle cells pyroptosis. Cardiovasc Drugs Ther 37, 1–14 (2023). https://doi.org/10.1007/s10557-022-07352-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-022-07352-w

Keywords

Navigation