Skip to main content

Advertisement

Log in

An Assessment of the Therapeutic Landscape for the Treatment of Heart Disease in the RASopathies

  • Review Article
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

The RAS/mitogen-activated protein kinase (MAPK) pathway controls a plethora of developmental and post-developmental processes. It is now clear that mutations in the RAS-MAPK pathway cause developmental diseases collectively referred to as the RASopathies. The RASopathies include Noonan syndrome, Noonan syndrome with multiple lentigines, cardiofaciocutaneous syndrome, neurofibromatosis type 1, and Costello syndrome. RASopathy patients exhibit a wide spectrum of congenital heart defects (CHD), such as valvular abnormalities and hypertrophic cardiomyopathy (HCM). Since the cardiovascular defects are the most serious and recurrent cause of mortality in RASopathy patients, it is critical to understand the pathological signaling mechanisms that drive the disease. Therapies for the treatment of HCM and other RASopathy-associated comorbidities have yet to be fully realized. Recent developments have shown promise for the use of repurposed antineoplastic drugs that target the RAS-MAPK pathway for the treatment of RASopathy-associated HCM. However, given the impact of the RAS-MAPK pathway in post-developmental physiology, establishing safety and evaluating risk when treating children will be paramount. As such insight provided by preclinical and clinical information will be critical. This review will highlight the cardiovascular manifestations caused by the RASopathies and will discuss the emerging therapies for treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Not applicable

References

  1. Kolch W. Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions. Biochem J. 2000;351(Pt 2):289–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Shaul YD, Seger R. The MEK/ERK cascade: from signaling specificity to diverse functions. Biochim Biophys Acta. 2007;1773(8):1213–26.

    Article  CAS  PubMed  Google Scholar 

  3. Pimienta G, Pascual J. Canonical and alternative MAPK signaling. Cell Cycle. 2007;6(21):2628–32.

    Article  CAS  PubMed  Google Scholar 

  4. Plotnikov A, Zehorai E, Procaccia S, Seger R. The MAPK cascades: signaling components, nuclear roles and mechanisms of nuclear translocation. Biochim Biophys Acta. 2011;1813(9):1619–33.

    Article  CAS  PubMed  Google Scholar 

  5. Dard L, Bellance N, Lacombe D, Rossignol R. RAS signalling in energy metabolism and rare human diseases. Biochim Biophys Acta Bioenerg. 2018;1859(9):845–67.

    Article  CAS  PubMed  Google Scholar 

  6. Kolch W. Coordinating ERK/MAPK signalling through scaffolds and inhibitors. Nat Rev Mol Cell Biol. 2005;6(11):827–37.

    Article  CAS  PubMed  Google Scholar 

  7. McKay MM, Morrison DK. Integrating signals from RTKs to ERK/MAPK. Oncogene. 2007;26(22):3113–21.

    Article  CAS  PubMed  Google Scholar 

  8. Heineke J, Molkentin JD. Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat Rev Mol Cell Biol. 2006;7(8):589–600.

    Article  CAS  PubMed  Google Scholar 

  9. Muslin AJ. MAPK signalling in cardiovascular health and disease: molecular mechanisms and therapeutic targets. Clin Sci (Lond). 2008;115(7):203–18.

    Article  CAS  PubMed  Google Scholar 

  10. Sala V, Gallo S, Leo C, Gatti S, Gelb BD, Crepaldi T. Signaling to cardiac hypertrophy: insights from human and mouse RASopathies. Mol Med. 2012;18:938–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang Y. Mitogen-activated protein kinases in heart development and diseases. Circulation. 2007;116(12):1413–23.

    Article  CAS  PubMed  Google Scholar 

  12. Tham YK, Bernardo BC, Ooi JY, Weeks KL, McMullen JR. Pathophysiology of cardiac hypertrophy and heart failure: signaling pathways and novel therapeutic targets. Arch Toxicol. 2015;89(9):1401–38.

    Article  CAS  PubMed  Google Scholar 

  13. Varnava AM, Elliott PM, Sharma S, McKenna WJ, Davies MJ. Hypertrophic cardiomyopathy: the interrelation of disarray, fibrosis, and small vessel disease. Heart. 2000;84(5):476–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dorn GW 2nd. The fuzzy logic of physiological cardiac hypertrophy. Hypertension. 2007;49(5):962–70.

    Article  CAS  PubMed  Google Scholar 

  15. McMullen JR, Jennings GL. Differences between pathological and physiological cardiac hypertrophy: novel therapeutic strategies to treat heart failure. Clin Exp Pharmacol Physiol. 2007;34(4):255–62.

    Article  CAS  PubMed  Google Scholar 

  16. Brancaccio M, Hirsch E, Notte A, Selvetella G, Lembo G, Tarone G. Integrin signalling: the tug-of-war in heart hypertrophy. Cardiovasc Res. 2006;70(3):422–33.

    Article  CAS  PubMed  Google Scholar 

  17. Delcourt N, Bockaert J, Marin P. GPCR-jacking: from a new route in RTK signalling to a new concept in GPCR activation. Trends Pharmacol Sci. 2007;28(12):602–7.

    Article  CAS  PubMed  Google Scholar 

  18. Olson EN, Schneider MD. Sizing up the heart: development redux in disease. Genes Dev. 2003;17(16):1937–56.

    Article  CAS  PubMed  Google Scholar 

  19. Glennon PE, Kaddoura S, Sale EM, Sale GJ, Fuller SJ, Sugden PH. Depletion of mitogen-activated protein kinase using an antisense oligodeoxynucleotide approach downregulates the phenylephrine-induced hypertrophic response in rat cardiac myocytes. Circ Res. 1996;78(6):954–61.

    Article  CAS  PubMed  Google Scholar 

  20. Yue TL, Gu JL, Wang C, Reith AD, Lee JC, Mirabile RC, et al. Extracellular signal-regulated kinase plays an essential role in hypertrophic agonists, endothelin-1 and phenylephrine-induced cardiomyocyte hypertrophy. J Biol Chem. 2000;275(48):37895–901.

    Article  CAS  PubMed  Google Scholar 

  21. Harris IS, Zhang S, Treskov I, Kovacs A, Weinheimer C, Muslin AJ. Raf-1 kinase is required for cardiac hypertrophy and cardiomyocyte survival in response to pressure overload. Circulation. 2004;110(6):718–23.

    Article  CAS  PubMed  Google Scholar 

  22. Yamaguchi O, Watanabe T, Nishida K, Kashiwase K, Higuchi Y, Takeda T, et al. Cardiac-specific disruption of the c-raf-1 gene induces cardiac dysfunction and apoptosis. J Clin Invest. 2004;114(7):937–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Purcell NH, Wilkins BJ, York A, Saba-El-Leil MK, Meloche S, Robbins J, et al. Genetic inhibition of cardiac ERK1/2 promotes stress-induced apoptosis and heart failure but has no effect on hypertrophy in vivo. Proc Natl Acad Sci U S A. 2007;104(35):14074–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kim EK, Choi EJ. Pathological roles of MAPK signaling pathways in human diseases. Biochim Biophys Acta. 2010;1802(4):396–405.

    Article  CAS  PubMed  Google Scholar 

  25. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.

    Article  CAS  PubMed  Google Scholar 

  26. Araki T, Chan G, Newbigging S, Morikawa L, Bronson RT, Neel BG. Noonan syndrome cardiac defects are caused by PTPN11 acting in endocardium to enhance endocardial-mesenchymal transformation. Proc Natl Acad Sci U S A. 2009;106(12):4736–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Simanshu DK, Nissley DV, McCormick F. RAS proteins and their regulators in human disease. Cell. 2017;170(1):17–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tidyman WE, Rauen KA. The RASopathies: developmental syndromes of Ras/MAPK pathway dysregulation. Curr Opin Genet Dev. 2009;19(3):230–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rauen KA. The RASopathies. Annu Rev Genomics Hum Genet. 2013;14:355–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tidyman WE, Rauen KA. Pathogenetics of the RASopathies. Hum Mol Genet. 2016;25(R2):R123–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tajan M, Paccoud R, Branka S, Edouard T, Yart A. The RASopathy family: consequences of germline activation of the RAS/MAPK pathway. Endocr Rev. 2018;39(5):676–700.

    Article  PubMed  Google Scholar 

  32. Jaffre F, Miller CL, Schanzer A, Evans T, Roberts AE, Hahn A, et al. Inducible pluripotent stem cell-derived cardiomyocytes reveal aberrant extracellular regulated kinase 5 and mitogen-activated protein kinase kinase 1/2 signaling concomitantly promote hypertrophic cardiomyopathy in RAF1-associated Noonan syndrome. Circulation. 2019;140(3):207–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hernández-Porras I, Guerra C. Modeling RASopathies with genetically modified mouse models. New York: Springer; 2017. p. 379–408.

    Google Scholar 

  34. Weismann CG, Gelb BD. The genetics of congenital heart disease: a review of recent developments. Curr Opin Cardiol. 2007;22(3):200–6.

    Article  PubMed  Google Scholar 

  35. Wolf M, Basson CT. The molecular genetics of congenital heart disease: a review of recent developments. Curr Opin Cardiol. 2010;25(3):192–7.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Fahed AC, Gelb BD, Seidman JG, Seidman CE. Genetics of congenital heart disease: the glass half empty. Circ Res. 2013;112(4):707–20.

    Article  CAS  PubMed  Google Scholar 

  37. Goldmuntz E. The epidemiology and genetics of congenital heart disease. Clin Perinatol. 2001;28(1):1.

    Article  CAS  PubMed  Google Scholar 

  38. Cerrato F, Pacileo G, Limongelli G, Gagliardi MG, Santoro G, Digilio MC, et al. A standard echocardiographic and tissue Doppler study of morphological and functional findings in children with hypertrophic cardiomyopathy compared to those with left ventricular hypertrophy in the setting of Noonan and LEOPARD syndromes. Cardiol Young. 2008;18(6):575–80.

    Article  PubMed  Google Scholar 

  39. Prendiville TW, Gauvreau K, Tworog-Dube E, Patkin L, Kucherlapati RS, Roberts AE, et al. Cardiovascular disease in Noonan syndrome. Arch Dis Child. 2014;99(7):629–34.

    Article  PubMed  Google Scholar 

  40. Spartalis M, Tzatzaki E, Athanasiou A, Spartalis E. eComment. Noonan syndrome and biventricular hypertrophic obstructive cardiomyopathy. Interact Cardiovasc Thorac Surg. 2017;25(3):498.

    Article  PubMed  Google Scholar 

  41. Gelb BD, Roberts AE, Tartaglia M. Cardiomyopathies in Noonan syndrome and the other RASopathies. Prog Pediatr Cardiol. 2015;39(1):13–9.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Maron BJ, Towbin JA, Thiene G, Antzelevitch C, Corrado D, Arnett D, et al. Contemporary definitions and classification of the cardiomyopathies. Circulation. 2006;113(14):1807–16.

    Article  PubMed  Google Scholar 

  43. Mendez HM, Opitz JM. Noonan syndrome: a review. Am J Med Genet. 1985;21(3):493–506.

    Article  CAS  PubMed  Google Scholar 

  44. Stoll C, Dott B, Alembik Y, Roth MP. Associated noncardiac congenital anomalies among cases with congenital heart defects. Eur J Med Genet. 2015;58(2):75–85.

    Article  PubMed  Google Scholar 

  45. Tartaglia M, Mehler EL, Goldberg R, Zampino G, Brunner HG, Kremer H, et al. Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome. Nat Genet. 2001;29(4):465–8.

    Article  CAS  PubMed  Google Scholar 

  46. Tartaglia M, Pennacchio LA, Zhao C, Yadav KK, Fodale V, Sarkozy A, et al. Gain-of-function SOS1 mutations cause a distinctive form of Noonan syndrome. Nat Genet. 2007;39(1):75–9.

    Article  CAS  PubMed  Google Scholar 

  47. Schubbert S, Zenker M, Rowe SL, Boll S, Klein C, Bollag G, et al. Germline KRAS mutations cause Noonan syndrome. Nat Genet. 2006;38(3):331–6.

    Article  CAS  PubMed  Google Scholar 

  48. Cirstea IC, Kutsche K, Dvorsky R, Gremer L, Carta C, Horn D, et al. A restricted spectrum of NRAS mutations causes Noonan syndrome. Nat Genet. 2010;42(1):27–9.

    Article  CAS  PubMed  Google Scholar 

  49. Pandit B, Sarkozy A, Pennacchio LA, Carta C, Oishi K, Martinelli S, et al. Gain-of-function RAF1 mutations cause Noonan and LEOPARD syndromes with hypertrophic cardiomyopathy. Nat Genet. 2007;39(8):1007–12.

    Article  CAS  PubMed  Google Scholar 

  50. Razzaque MA, Nishizawa T, Komoike Y, Yagi H, Furutani M, Amo R, et al. Germline gain-of-function mutations in RAF1 cause Noonan syndrome. Nat Genet. 2007;39(8):1013–7.

    Article  CAS  PubMed  Google Scholar 

  51. Sarkozy A, Carta C, Moretti S, Zampino G, Digilio MC, Pantaleoni F, et al. Germline BRAF mutations in Noonan, LEOPARD, and cardiofaciocutaneous syndromes: molecular diversity and associated phenotypic spectrum. Hum Mutat. 2009;30(4):695–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Aoki Y, Niihori T, Banjo T, Okamoto N, Mizuno S, Kurosawa K, et al. Gain-of-function mutations in RIT1 cause Noonan syndrome, a RAS/MAPK pathway syndrome. Am J Hum Genet. 2013;93(1):173–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yamamoto GL, Aguena M, Gos M, Hung C, Pilch J, Fahiminiya S, et al. Rare variants in SOS2 and LZTR1 are associated with Noonan syndrome. J Med Genet. 2015;52(6):413–21.

    Article  CAS  PubMed  Google Scholar 

  54. Johnston JJ, van der Smagt JJ, Rosenfeld JA, Pagnamenta AT, Alswaid A, Baker EH, et al. Autosomal recessive Noonan syndrome associated with biallelic LZTR1 variants. Genet Med. 2018;20(10):1175–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Roberts AE, Allanson JE, Tartaglia M, Gelb BD. Noonan syndrome. Lancet. 2013;381(9863):333–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Stein-Gerlach M, Wallasch C, Ullrich A. SHP-2, SH2-containing protein tyrosine phosphatase-2. Int J Biochem Cell Biol. 1998;30(5):559–66.

    Article  CAS  PubMed  Google Scholar 

  57. Hof P, Pluskey S, Dhe-Paganon S, Eck MJ, Shoelson SE. Crystal structure of the tyrosine phosphatase SHP-2. Cell. 1998;92(4):441–50.

    Article  CAS  PubMed  Google Scholar 

  58. Maroun CR, Naujokas MA, Holgado-Madruga M, Wong AJ, Park M. The tyrosine phosphatase SHP-2 is required for sustained activation of extracellular signal-regulated kinase and epithelial morphogenesis downstream from the met receptor tyrosine kinase. Mol Cell Biol. 2000;20(22):8513–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Cunnick JM, Meng S, Ren Y, Desponts C, Wang HG, Djeu JY, et al. Regulation of the mitogen-activated protein kinase signaling pathway by SHP2. J Biol Chem. 2002;277(11):9498–504.

    Article  CAS  PubMed  Google Scholar 

  60. Tajan M, de Rocca SA, Valet P, Edouard T, Yart A. SHP2 sails from physiology to pathology. Eur J Med Genet. 2015;58(10):509–25.

    Article  PubMed  Google Scholar 

  61. Yang W, Klaman LD, Chen B, Araki T, Harada H, Thomas SM, et al. An Shp2/SFK/Ras/Erk signaling pathway controls trophoblast stem cell survival. Dev Cell. 2006;10(3):317–27.

    Article  CAS  PubMed  Google Scholar 

  62. Pierpont ME, Digilio MC. Cardiovascular disease in Noonan syndrome. Curr Opin Pediatr. 2018;30(5):601–8.

    Article  PubMed  Google Scholar 

  63. Sewduth RN, Pandolfi S, Steklov M, Sheryazdanova A, Zhao P, Criem N, et al. The Noonan syndrome gene Lztr1 controls cardiovascular function by regulating vesicular trafficking. Circ Res. 2020;126(10):1379–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Marino B, Digilio MC, Toscano A, Giannotti A, Dallapiccola B. Congenital heart diseases in children with Noonan syndrome: an expanded cardiac spectrum with high prevalence of atrioventricular canal. J Pediatr. 1999;135(6):703–6.

    Article  CAS  PubMed  Google Scholar 

  65. Tartaglia M, Kalidas K, Shaw A, Song X, Musat DL, van der Burgt I, et al. PTPN11 mutations in Noonan syndrome: molecular spectrum, genotype-phenotype correlation, and phenotypic heterogeneity. Am J Hum Genet. 2002;70(6):1555–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sarkozy A, Conti E, Seripa D, Digilio MC, Grifone N, Tandoi C, et al. Correlation between PTPN11 gene mutations and congenital heart defects in Noonan and LEOPARD syndromes. J Med Genet. 2003;40(9):704–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Calcagni G, Limongelli G, D’Ambrosio A, Gesualdo F, Digilio MC, Baban A, et al. Cardiac defects, morbidity and mortality in patients affected by RASopathies. CARNET study results Int J Cardiol. 2017;245:92–8.

    PubMed  Google Scholar 

  68. Sarkozy A, Digilio MC, Dallapiccola B. Leopard syndrome. Orphanet J Rare Dis. 2008;3:13.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Martinez-Quintana E, Rodriguez-Gonzalez F. LEOPARD syndrome: clinical features and gene mutations. Mol Syndromol. 2012;3(4):145–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. National Organization for Rare Disorders. Noonan syndrome with multiple lentigines. 2018. https://rarediseases.org/rare-diseases/leopard-syndrome/. Accessed 08/16/2021.

  71. Digilio MC, Sarkozy A, de Zorzi A, Pacileo G, Limongelli G, Mingarelli R, et al. LEOPARD syndrome: clinical diagnosis in the first year of life. Am J Med Genet A. 2006;140(7):740–6.

    Article  PubMed  Google Scholar 

  72. Digilio MC, Conti E, Sarkozy A, Mingarelli R, Dottorini T, Marino B, et al. Grouping of multiple-lentigines/LEOPARD and Noonan syndromes on the PTPN11 gene. Am J Hum Genet. 2002;71(2):389–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Legius E, Schrander-Stumpel C, Schollen E, Pulles-Heintzberger C, Gewillig M, Fryns JP. PTPN11 mutations in LEOPARD syndrome. J Med Genet. 2002;39(8):571–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Koudova M, Seemanova E, Zenker M. Novel BRAF mutation in a patient with LEOPARD syndrome and normal intelligence. Eur J Med Genet. 2009;52(5):337–40.

    Article  PubMed  Google Scholar 

  75. Nishi E, Mizuno S, Nanjo Y, Niihori T, Fukushima Y, Matsubara Y, et al. A novel heterozygous MAP2K1 mutation in a patient with Noonan syndrome with multiple lentigines. Am J Med Genet A. 2015;167A(2):407–11.

    Article  PubMed  Google Scholar 

  76. Tartaglia M, Martinelli S, Stella L, Bocchinfuso G, Flex E, Cordeddu V, et al. Diversity and functional consequences of germline and somatic PTPN11 mutations in human disease. Am J Hum Genet. 2006;78(2):279–90.

    Article  CAS  PubMed  Google Scholar 

  77. Kontaridis MI, Swanson KD, David FS, Barford D, Neel BG. PTPN11 (Shp2) mutations in LEOPARD syndrome have dominant negative, not activating, effects. J Biol Chem. 2006;281(10):6785–92.

    Article  CAS  PubMed  Google Scholar 

  78. Yu ZH, Zhang RY, Walls CD, Chen L, Zhang S, Wu L, et al. Molecular basis of gain-of-function LEOPARD syndrome-associated SHP2 mutations. Biochemistry. 2014;53(25):4136–51.

    Article  CAS  PubMed  Google Scholar 

  79. Limongelli G, Pacileo G, Marino B, Digilio MC, Sarkozy A, Elliott P, et al. Prevalence and clinical significance of cardiovascular abnormalities in patients with the LEOPARD syndrome. Am J Cardiol. 2007;100(4):736–41.

    Article  PubMed  Google Scholar 

  80. Limongelli G, Pacileo G, Russo MG, Sarkozy A, Felicetti M, Di Salvo G, et al. Severe, early onset hypertrophic cardiomyopathy in a family with LEOPARD syndrome. J Prenat Med. 2008;2(2):24–6.

    PubMed  PubMed Central  Google Scholar 

  81. Hahn A, Lauriol J, Thul J, Behnke-Hall K, Logeswaran T, Schanzer A, et al. Rapidly progressive hypertrophic cardiomyopathy in an infant with Noonan syndrome with multiple lentigines: palliative treatment with a rapamycin analog. Am J Med Genet A. 2015;167A(4):744–51.

    Article  PubMed  Google Scholar 

  82. Rauen KA. HRAS and the Costello syndrome. Clin Genet. 2007;71(2):101–8.

    Article  CAS  PubMed  Google Scholar 

  83. Tidyman WE, Rauen KA. Noonan, Costello and cardio-facio-cutaneous syndromes: dysregulation of the Ras-MAPK pathway. Expert Rev Mol Med. 2008;10: e37.

    Article  PubMed  Google Scholar 

  84. Siwik ES, Zahka KG, Wiesner GL, Limwongse C. Cardiac disease in Costello syndrome. Pediatrics. 1998;101(4 Pt 1):706–9.

    Article  CAS  PubMed  Google Scholar 

  85. van Eeghen AM, van Gelderen I, Hennekam RC. Costello syndrome: report and review. Am J Med Genet. 1999;82(2):187–93.

    Article  PubMed  Google Scholar 

  86. Lin AE, Alexander ME, Colan SD, Kerr B, Rauen KA, Noonan J, et al. Clinical, pathological, and molecular analyses of cardiovascular abnormalities in Costello syndrome: a Ras/MAPK pathway syndrome. Am J Med Genet A. 2011;155A(3):486–507.

    Article  PubMed  Google Scholar 

  87. Rauen KA, Banerjee A, Bishop WR, Lauchle JO, McCormick F, McMahon M, et al. Costello and cardio-facio-cutaneous syndromes: moving toward clinical trials in RASopathies. Am J Med Genet C Semin Med Genet. 2011;157C(2):136–46.

    Article  PubMed  Google Scholar 

  88. Siegel DH, Mann JA, Krol AL, Rauen KA. Dermatological phenotype in Costello syndrome: consequences of Ras dysregulation in development. Br J Dermatol. 2012;166(3):601–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Niihori T, Aoki Y, Narumi Y, Neri G, Cave H, Verloes A, et al. Germline KRAS and BRAF mutations in cardio-facio-cutaneous syndrome. Nat Genet. 2006;38(3):294–6.

    Article  CAS  PubMed  Google Scholar 

  90. Rodriguez-Viciana P, Tetsu O, Tidyman WE, Estep AL, Conger BA, Cruz MS, et al. Germline mutations in genes within the MAPK pathway cause cardio-facio-cutaneous syndrome. Science. 2006;311(5765):1287–90.

    Article  CAS  PubMed  Google Scholar 

  91. Ly KI, Blakeley JO. The diagnosis and management of neurofibromatosis type 1. Med Clin North Am. 2019;103(6):1035–54.

    Article  PubMed  Google Scholar 

  92. Miller DT, Freedenberg D, Schorry E, Ullrich NJ, Viskochil D, Korf BR et al. Health supervision for children with neurofibromatosis type 1. Pediatrics. 2019;143(5)

  93. Williams VC, Lucas J, Babcock MA, Gutmann DH, Korf B, Maria BL. Neurofibromatosis type 1 revisited. Pediatrics. 2009;123(1):124–33.

    Article  PubMed  Google Scholar 

  94. Cawthon RM, O’Connell P, Buchberg AM, Viskochil D, Weiss RB, Culver M, et al. Identification and characterization of transcripts from the neurofibromatosis 1 region: the sequence and genomic structure of EVI2 and mapping of other transcripts. Genomics. 1990;7(4):555–65.

    Article  CAS  PubMed  Google Scholar 

  95. Viskochil D, Buchberg AM, Xu G, Cawthon RM, Stevens J, Wolff RK, et al. Deletions and a translocation interrupt a cloned gene at the neurofibromatosis type 1 locus. Cell. 1990;62(1):187–92.

    Article  CAS  PubMed  Google Scholar 

  96. Wallace MR, Marchuk DA, Andersen LB, Letcher R, Odeh HM, Saulino AM, et al. Type 1 neurofibromatosis gene: identification of a large transcript disrupted in three NF1 patients. Science. 1990;249(4965):181–6.

    Article  CAS  PubMed  Google Scholar 

  97. Bergoug M, Doudeau M, Godin F, Mosrin C, Vallee B, Benedetti H. Neurofibromin structure, functions and regulation. Cells. 2020;9(11)

  98. Viskochil D. Genetics of neurofibromatosis 1 and the NF1 gene. J Child Neurol. 2002;17(8):562–70 (discussion 71–2, 646–51).

    Article  PubMed  Google Scholar 

  99. Yunoue S, Tokuo H, Fukunaga K, Feng L, Ozawa T, Nishi T, et al. Neurofibromatosis type I tumor suppressor neurofibromin regulates neuronal differentiation via its GTPase-activating protein function toward Ras. J Biol Chem. 2003;278(29):26958–69.

    Article  CAS  PubMed  Google Scholar 

  100. Ferner RE, Huson SM, Thomas N, Moss C, Willshaw H, Evans DG, et al. Guidelines for the diagnosis and management of individuals with neurofibromatosis 1. J Med Genet. 2007;44(2):81–8.

    Article  CAS  PubMed  Google Scholar 

  101. Friedman JM, Arbiser J, Epstein JA, Gutmann DH, Huot SJ, Lin AE, et al. Cardiovascular disease in neurofibromatosis 1: report of the NF1 cardiovascular task force. Genet Med. 2002;4(3):105–11.

    Article  CAS  PubMed  Google Scholar 

  102. Lin AE, Birch PH, Korf BR, Tenconi R, Niimura M, Poyhonen M, et al. Cardiovascular malformations and other cardiovascular abnormalities in neurofibromatosis 1. Am J Med Genet. 2000;95(2):108–17.

    Article  CAS  PubMed  Google Scholar 

  103. Wilkinson JD, Lowe AM, Salbert BA, Sleeper LA, Colan SD, Cox GF, et al. Outcomes in children with Noonan syndrome and hypertrophic cardiomyopathy: a study from the Pediatric Cardiomyopathy Registry. Am Heart J. 2012;164(3):442–8.

    Article  PubMed  Google Scholar 

  104. Dhillon AS, Hagan S, Rath O, Kolch W. MAP kinase signalling pathways in cancer. Oncogene. 2007;26(22):3279–90.

    Article  CAS  PubMed  Google Scholar 

  105. Santarpia L, Lippman SM, El-Naggar AK. Targeting the MAPK-RAS-RAF signaling pathway in cancer therapy. Expert Opin Ther Targets. 2012;16(1):103–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Lee S, Rauch J, Kolch W. Targeting MAPK signaling in cancer: mechanisms of drug resistance and sensitivity. Int J Mol Sci. 2020;21(3)

  107. Chen PC, Wakimoto H, Conner D, Araki T, Yuan T, Roberts A, et al. Activation of multiple signaling pathways causes developmental defects in mice with a Noonan syndrome-associated Sos1 mutation. J Clin Invest. 2010;120(12):4353–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Hernandez-Porras I, Fabbiano S, Schuhmacher AJ, Aicher A, Canamero M, Camara JA, et al. K-RasV14I recapitulates Noonan syndrome in mice. Proc Natl Acad Sci U S A. 2014;111(46):16395–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Wu X, Simpson J, Hong JH, Kim KH, Thavarajah NK, Backx PH, et al. MEK-ERK pathway modulation ameliorates disease phenotypes in a mouse model of Noonan syndrome associated with the Raf 1(L613V) mutation. J Clin Invest. 2011;121(3):1009–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Andelfinger G, Marquis C, Raboisson MJ, Theoret Y, Waldmuller S, Wiegand G, et al. Hypertrophic cardiomyopathy in Noonan syndrome treated by MEK-inhibition. J Am Coll Cardiol. 2019;73(17):2237–9.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Sussman MA, Volkers M, Fischer K, Bailey B, Cottage CT, Din S, et al. Myocardial AKT: the omnipresent nexus. Physiol Rev. 2011;91(3):1023–70.

    Article  CAS  PubMed  Google Scholar 

  112. Walsh K. Akt signaling and growth of the heart. Circulation. 2006;113(17):2032–4.

    Article  PubMed  Google Scholar 

  113. Haq S, Choukroun G, Lim H, Tymitz KM, del Monte F, Gwathmey J, et al. Differential activation of signal transduction pathways in human hearts with hypertrophy versus advanced heart failure. Circulation. 2001;103(5):670–7.

    Article  CAS  PubMed  Google Scholar 

  114. Luckey SW, Walker LA, Smyth T, Mansoori J, Messmer-Kratzsch A, Rosenzweig A, et al. The role of Akt/GSK-3beta signaling in familial hypertrophic cardiomyopathy. J Mol Cell Cardiol. 2009;46(5):739–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Naga Prasad SV, Esposito G, Mao L, Koch WJ, Rockman HA. Gbetagamma-dependent phosphoinositide 3-kinase activation in hearts with in vivo pressure overload hypertrophy. J Biol Chem. 2000;275(7):4693–8.

    Article  CAS  PubMed  Google Scholar 

  116. Marin TM, Keith K, Davies B, Conner DA, Guha P, Kalaitzidis D, et al. Rapamycin reverses hypertrophic cardiomyopathy in a mouse model of LEOPARD syndrome-associated PTPN11 mutation. J Clin Invest. 2011;121(3):1026–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Wang J, Chandrasekhar V, Abbadessa G, Yu Y, Schwartz B, Kontaridis MI. In vivo efficacy of the AKT inhibitor ARQ 092 in Noonan syndrome with multiple lentigines-associated hypertrophic cardiomyopathy. PLoS ONE. 2017;12(6): e0178905.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Paardekooper Overman J, Yi JS, Bonetti M, Soulsby M, Preisinger C, Stokes MP, et al. PZR coordinates Shp2 Noonan and LEOPARD syndrome signaling in zebrafish and mice. Mol Cell Biol. 2014;34(15):2874–89.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Yi JS, Huang Y, Kwaczala AT, Kuo IY, Ehrlich BE, Campbell SG, et al. Low-dose dasatinib rescues cardiac function in Noonan syndrome. JCI Insight. 2016;1(20): e90220.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Yi JS, Perla S, Huang Y, Mizuno K, Giordano FJ, Vinks AA et al. Low-dose dasatinib ameliorates hypertrophic cardiomyopathy in Noonan syndrome with multiple lentigines. Cardiovasc Drugs Ther. 2021

  121. Erdos EG. Conversion of angiotensin I to angiotensin II. Am J Med. 1976;60(6):749–59.

    Article  CAS  PubMed  Google Scholar 

  122. Gilbert BW. ACE inhibitors and regression of left ventricular hypertrophy. Clin Cardiol. 1992;15(10):711–4.

    Article  CAS  PubMed  Google Scholar 

  123. Schuhmacher AJ, Guerra C, Sauzeau V, Canamero M, Bustelo XR, Barbacid M. A mouse model for Costello syndrome reveals an Ang II-mediated hypertensive condition. J Clin Invest. 2008;118(6):2169–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Tardiff JC, Carrier L, Bers DM, Poggesi C, Ferrantini C, Coppini R, et al. Targets for therapy in sarcomeric cardiomyopathies. Cardiovasc Res. 2015;105(4):457–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Tsukamoto O. Direct sarcomere modulators are promising new treatments for cardiomyopathies. Int J Mol Sci. 2019;21(1)

  126. Zhu L, Roberts R, Huang R, Zhao J, Xia M, Delavan B, et al. Drug repositioning for Noonan and LEOPARD syndromes by integrating transcriptomics with a structure-based approach. Front Pharmacol. 2020;11:927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Carvajal-Vergara X, Sevilla A, D’Souza SL, Ang YS, Schaniel C, Lee DF, et al. Patient-specific induced pluripotent stem-cell-derived models of LEOPARD syndrome. Nature. 2010;465(7299):808–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Rooney GE, Goodwin AF, Depeille P, Sharir A, Schofield CM, Yeh E, et al. Human iPS cell-derived neurons uncover the impact of increased Ras signaling in Costello syndrome. J Neurosci. 2016;36(1):142–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Yeh E, Dao DQ, Wu ZY, Kandalam SM, Camacho FM, Tom C, et al. Patient-derived iPSCs show premature neural differentiation and neuron type-specific phenotypes relevant to neurodevelopment. Mol Psychiatry. 2018;23(8):1687–98.

    Article  CAS  PubMed  Google Scholar 

  130. Li R, Baskfield A, Lin Y, Beers J, Zou J, Liu C, et al. Generation of an induced pluripotent stem cell line (TRNDi003-A) from a Noonan syndrome with multiple lentigines (NSML) patient carrying a p.Q510P mutation in the PTPN11 gene. Stem Cell Res. 2019;34:101374.

    Article  CAS  PubMed  Google Scholar 

  131. Araki T, Mohi MG, Ismat FA, Bronson RT, Williams IR, Kutok JL, et al. Mouse model of Noonan syndrome reveals cell type- and gene dosage-dependent effects of Ptpn11 mutation. Nat Med. 2004;10(8):849–57.

    Article  CAS  PubMed  Google Scholar 

  132. Nakamura T, Colbert M, Krenz M, Molkentin JD, Hahn HS, Dorn GW 2nd, et al. Mediating ERK 1/2 signaling rescues congenital heart defects in a mouse model of Noonan syndrome. J Clin Invest. 2007;117(8):2123–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Krenz M, Gulick J, Osinska HE, Colbert MC, Molkentin JD, Robbins J. Role of ERK1/2 signaling in congenital valve malformations in Noonan syndrome. Proc Natl Acad Sci U S A. 2008;105(48):18930–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Yin JC, Platt MJ, Tian X, Wu X, Backx PH, Simpson JA, et al. Cellular interplay via cytokine hierarchy causes pathological cardiac hypertrophy in RAF1-mutant Noonan syndrome. Nat Commun. 2017;8:15518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Takahara S, Inoue SI, Miyagawa-Tomita S, Matsuura K, Nakashima Y, Niihori T, et al. New Noonan syndrome model mice with RIT1 mutation exhibit cardiac hypertrophy and susceptibility to beta-adrenergic stimulation-induced cardiac fibrosis. EBioMedicine. 2019;42:43–53.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Castel P, Cheng A, Cuevas-Navarro A, Everman DB, Papageorge AG, Simanshu DK, et al. RIT1 oncoproteins escape LZTR1-mediated proteolysis. Science. 2019;363(6432):1226–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Steklov M, Pandolfi S, Baietti MF, Batiuk A, Carai P, Najm P, et al. Mutations in LZTR1 drive human disease by dysregulating RAS ubiquitination. Science. 2018;362(6419):1177–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Lauriol J, Cabrera JR, Roy A, Keith K, Hough SM, Damilano F, et al. Developmental SHP2 dysfunction underlies cardiac hypertrophy in Noonan syndrome with multiple lentigines. J Clin Invest. 2016;126(8):2989–3005.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Tajan M, Batut A, Cadoudal T, Deleruyelle S, Le Gonidec S, Saint Laurent C, et al. LEOPARD syndrome-associated SHP2 mutation confers leanness and protection from diet-induced obesity. Proc Natl Acad Sci U S A. 2014;111(42):E4494–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Schramm C, Fine DM, Edwards MA, Reeb AN, Krenz M. The PTPN11 loss-of-function mutation Q510E-Shp2 causes hypertrophic cardiomyopathy by dysregulating mTOR signaling. Am J Physiol Heart Circ Physiol. 2012;302(1):H231–43.

    Article  CAS  PubMed  Google Scholar 

  141. Inoue S, Moriya M, Watanabe Y, Miyagawa-Tomita S, Niihori T, Oba D, et al. New BRAF knockin mice provide a pathogenetic mechanism of developmental defects and a therapeutic approach in cardio-facio-cutaneous syndrome. Hum Mol Genet. 2014;23(24):6553–66.

    Article  CAS  PubMed  Google Scholar 

  142. Andreadi C, Cheung LK, Giblett S, Patel B, Jin H, Mercer K, et al. The intermediate-activity (L597V)BRAF mutant acts as an epistatic modifier of oncogenic RAS by enhancing signaling through the RAF/MEK/ERK pathway. Genes Dev. 2012;26(17):1945–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Aoidi R, Houde N, Landry-Truchon K, Holter M, Jacquet K, Charron L et al. Mek1(Y130C) mice recapitulate aspects of human cardio-facio-cutaneous syndrome. Dis Model Mech. 2018;11(3)

  144. Brannan CI, Perkins AS, Vogel KS, Ratner N, Nordlund ML, Reid SW, et al. Targeted disruption of the neurofibromatosis type-1 gene leads to developmental abnormalities in heart and various neural crest-derived tissues. Genes Dev. 1994;8(9):1019–29.

    Article  CAS  PubMed  Google Scholar 

  145. Jacks T, Shih TS, Schmitt EM, Bronson RT, Bernards A, Weinberg RA. Tumour predisposition in mice heterozygous for a targeted mutation in Nf1. Nat Genet. 1994;7(3):353–61.

    Article  CAS  PubMed  Google Scholar 

  146. Gitler AD, Zhu Y, Ismat FA, Lu MM, Yamauchi Y, Parada LF, et al. Nf1 has an essential role in endothelial cells. Nat Genet. 2003;33(1):75–9.

    Article  CAS  PubMed  Google Scholar 

  147. Xu J, Ismat FA, Wang T, Lu MM, Antonucci N, Epstein JA. Cardiomyocyte-specific loss of neurofibromin promotes cardiac hypertrophy and dysfunction. Circ Res. 2009;105(3):304–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Lee PA, Ross J, Germak JA, Gut R. Effect of 4 years of growth hormone therapy in children with Noonan syndrome in the American Norditropin Studies: Web-Enabled Research (ANSWER) Program(R) registry. Int J Pediatr Endocrinol. 2012;2012(1):15.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Lee YS, Ehninger D, Zhou M, Oh JY, Kang M, Kwak C, et al. Mechanism and treatment for learning and memory deficits in mouse models of Noonan syndrome. Nat Neurosci. 2014;17(12):1736–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Dombi E, Baldwin A, Marcus LJ, Fisher MJ, Weiss B, Kim A, et al. Activity of selumetinib in neurofibromatosis type 1-related plexiform neurofibromas. N Engl J Med. 2016;375(26):2550–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Weiss BD, Wolters PL, Plotkin SR, Widemann BC, Tonsgard JH, Blakeley J, et al. NF106: a Neurofibromatosis Clinical Trials Consortium phase II trial of the MEK inhibitor mirdametinib (PD-0325901) in adolescents and adults with NF1-related plexiform neurofibromas. J Clin Oncol. 2021;39(7):797–806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Lion-Francois L, Gueyffier F, Mercier C, Gerard D, Herbillon V, Kemlin I, et al. The effect of methylphenidate on neurofibromatosis type 1: a randomised, double-blind, placebo-controlled, crossover trial. Orphanet J Rare Dis. 2014;9:142.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Robertson KA, Nalepa G, Yang FC, Bowers DC, Ho CY, Hutchins GD, et al. Imatinib mesylate for plexiform neurofibromas in patients with neurofibromatosis type 1: a phase 2 trial. Lancet Oncol. 2012;13(12):1218–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by NIH grant R01HL134166 to AMB.

Author information

Authors and Affiliations

Authors

Contributions

JSY, SP, and AMB contributed equally to this work.

Corresponding author

Correspondence to Anton M. Bennett.

Ethics declarations

Ethics Approval

Not applicable

Consent to Participate

Not applicable.

Consent for Publication

Not applicable

Conflict of Interest

JSY and AMB are equity stakeholders in IGIA pharmaceuticals. The other authors declare that they have no competing interests with the contents of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, JS., Perla, S. & Bennett, A.M. An Assessment of the Therapeutic Landscape for the Treatment of Heart Disease in the RASopathies. Cardiovasc Drugs Ther 37, 1193–1204 (2023). https://doi.org/10.1007/s10557-022-07324-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-022-07324-0

Keywords

Navigation