Skip to main content

Advertisement

Log in

Spontaneous Reperfusion in Patients with Transient ST-Elevation Myocardial Infarction—Prevalence, Importance and Approaches to Management

  • Review Article
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Patients with transient ST-elevation myocardial infarction (STEMI) or spontaneous resolution (SpR) of the ST-segment elevation on electrocardiogram could potentially represent a unique group of patients posing a therapeutic management dilemma. In this review, we discuss the potential mechanisms underlying SpR, its relation to clinical outcomes and the proposed management options for patients with transient STEMI with a focus on immediate versus early percutaneous coronary intervention. We performed a structured literature search of PubMed and Cochrane Library databases from inception to December 2020. Studies focused on SpR in patients with acute coronary syndrome were selected. Available data suggest that deferral of angiography and revascularization within 24–48 h in these patients is reasonable and associated with similar or perhaps better outcomes than immediate angiography. Further randomized trials are needed to elucidate the best pharmacological and invasive strategies for this cohort.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of Data and Materials

The authors confirm that the data supporting the findings of this study are available within the article.

Abbreviations

ACS:

Acute coronary syndrome

CAD:

Coronary artery disease

GPI:

Glycoprotein IIb/IIIa inhibitors

IRA:

Infarct-related artery

MACE:

Major adverse cardiac events

NSTE-ACS:

Non-ST-elevation acute coronary syndrome

PCI:

Percutaneous coronary intervention

PPCI:

Primary percutaneous coronary intervention

SpR:

Spontaneous resolution

STEMI:

ST-elevation myocardial infarction

References

  1. Bainey KR, Fu Y, Wagner GS, et al. Spontaneous reperfusion in ST-elevation myocardial infarction: comparison of angiographic and electrocardiographic assessments. Am Heart J. 2008;156:248–55.

    Article  Google Scholar 

  2. Bellandi B, Zocchi C, Xanthopoulou I, et al. Morphine use and myocardial reperfusion in patients with acute myocardial infarction treated with primary PCI. Int J Cardiol. 2016;221:567–71.

    Article  Google Scholar 

  3. Rentoukas I, Giannopoulos G, Kaoukis A, et al. Cardioprotective role of remote ischemic periconditioning in primary percutaneous coronary intervention. JACC Cardiovasc Interv. 2010;3:49–55.

    Article  Google Scholar 

  4. Schröder R, Dissmann R, Brüggemann T, et al. Extent of early ST segment elevation resolution: a simple but strong predictor of outcome in patients with acute myocardial infarction. J Am Coll Cardiol. 1994;24:384–91.

    Article  Google Scholar 

  5. Rouleau F, Asfar P, Boulet S, et al. Transient ST segment elevation in right precordial leads induced by psychotropic drugs: relationship to the Brugada syndrome. J Cardiovasc Electrophysiol. 2001;12:61–5.

    Article  CAS  Google Scholar 

  6. Yasue H, Mizuno Y, Harada E. Coronary artery spasm-clinical features, pathogenesis and treatment. Proc Jpn Acad Ser B Phys Biol Sci. 2019;95:53–66.

    Article  CAS  Google Scholar 

  7. Zelinger AB, Falk RH, Hood WB. Electrical-induced sustained myocardial depolarization as a possible cause for transient ST elevation post-DC elective cardioversion. Am Heart J. 1982;103:1073–4.

    Article  CAS  Google Scholar 

  8. Prasad A, Lerman A, Rihal CS. Apical ballooning syndrome (Tako-Tsubo or stress cardiomyopathy): a mimic of acute myocardial infarction. Am Heart J. 2008;155:408–17.

    Article  Google Scholar 

  9. Golzar J, Mustafa SJ, Movahed A. Chest pain and ST-segment elevation 3 minutes after completion of adenosine pharmacologic stress testing. J Nucl Cardiol. 2004;11:744–6.

    Article  Google Scholar 

  10. Birnbaum Y, Fiol M, Nikus K, et al. A counterpoint paper: Comments on the electrocardiographic part of the 2018 Fourth Universal Definition of Myocardial Infarction. J Electrocardiol. 2020;60:142–7.

    Article  Google Scholar 

  11. Rimar D, Crystal E, Battler A, et al. Improved prognosis of patients presenting with clinical markers of spontaneous reperfusion during acute myocardial infarction. Heart. 2002;88:352–6.

    Article  CAS  Google Scholar 

  12. DeWood MA, Spores J, Notske R, et al. Prevalence of total coronary occlusion during the early hours of transmural myocardial infarction. N Engl J Med. 1980;303:897–902.

    Article  CAS  Google Scholar 

  13. Fefer P, Hod H, Hammerman H, Boyko V, Behar S, Matetzky S. Relation of clinically defined spontaneous reperfusion to outcome in ST-elevation myocardial infarction. Am J Cardiol. 2009;103:149–53.

    Article  Google Scholar 

  14. Farag M, Spinthakis N, Gue YX, et al. Impaired endogenous fibrinolysis in ST-segment elevation myocardial infarction patients undergoing primary percutaneous coronary intervention is a predictor of recurrent cardiovascular events: the RISK PPCI study. Eur Heart J. 2019;40:295–305.

    Article  CAS  Google Scholar 

  15. Blondheim DS, Kleiner-Shochat M, Asif A, et al. Characteristics, management, and outcome of transient ST-elevation versus persistent ST-elevation and non–ST-elevation myocardial infarction. Am J Cardiol. 2018;121:1449–55.

    Article  Google Scholar 

  16. Meisel SR, Dagan Y, Blondheim DS, et al. Transient ST-elevation myocardial infarction: clinical course with intense medical therapy and early invasive approach, and comparison with persistent ST-elevation myocardial infarction. Am Heart J. 2008;155:848–54.

    Article  Google Scholar 

  17. Badings EA, Remkes WS, The SHK, et al. Early or late intervention in patients with transient ST-segment elevation acute coronary syndrome: subgroup analysis of the ELISA-3 trial. Catheter Cardiovasc Interv. 2016;88:755–64.

    Article  Google Scholar 

  18. Ibanez B, James S, Agewall S, et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. Eur Heart J. 2018;39:119–77.

    Article  Google Scholar 

  19. O’Gara PT, Kushner FG, Ascheim DD, et al. 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation. 2013;127:e362–425.

    Article  Google Scholar 

  20. Collet J-P, Thiele H, Barbato E, et al. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur Heart J. 2021;42:1289–367.

    Article  Google Scholar 

  21. Amsterdam EA, Wenger NK, Brindis RG, et al. 2014 AHA/ACC guideline for the management of patients with non-st-elevation acute coronary syndromes: a report of the American college of cardiology/American heart association task force on practice guidelines. Circulation. 2014;130:e344–426.

    Google Scholar 

  22. Lemkes JS, Janssens GN, van der Hoeven NW, et al. Timing of revascularization in patients with transient ST-segment elevation myocardial infarction: a randomized clinical trial. Eur Heart J. 2019;40:283–91.

    Article  CAS  Google Scholar 

  23. Shavadia JS, Granger CB, Alemayehu W, et al. High-throughput targeted proteomics discovery approach and spontaneous reperfusion in ST-segment elevation myocardial infarction. Am Heart J. 2020;220:137–44.

    Article  CAS  Google Scholar 

  24. Terkelsen CJ, Nørgaard BL, Lassen JF, et al. Potential significance of spontaneous and interventional ST-changes in patients transferred for primary percutaneous coronary intervention: observations from the ST-MONitoring in Acute Myocardial Infarction study (The MONAMI study). Eur Heart J. 2006;27:267–75.

    Article  Google Scholar 

  25. Hashimoto T, Ako J, Nakao K, et al. Pre-procedural thrombolysis in myocardial infarction flow in patients with ST-segment elevation myocardial infarction a j-minuet substudy. Int Heart J. 2018;59:920–5.

    Article  CAS  Google Scholar 

  26. Stone GW, Cox D, Garcia E, et al. Normal flow (TIMI-3) before mechanical reperfusion therapy is an independent determinant of survival in acute myocardial infarction: analysis from the Primary Angioplasty in Myocardial Infarction Trials. Circulation. 2001;104:636–41.

    Article  CAS  Google Scholar 

  27. Steg PG, Himbert D, Benamer H, et al. Conservative management of patients with acute myocardial infarction and spontaneous acute patency of the infarct-related artery. Am Heart J. 1997;134:248–52.

    Article  CAS  Google Scholar 

  28. Lee CW, Hong MK, Lee JH, et al. Determinants and prognostic significance of spontaneous coronary recanalization in acute myocardial infarction. Am J Cardiol. 2001;87:951–4.

    Article  CAS  Google Scholar 

  29. Brener SJ, Mehran R, Brodie BR, et al. Predictors and implications of coronary infarct artery patency at initial angiography in patients with acute myocardial infarction (from the CADILLAC and HORIZONS-AMI Trials). Am J Cardiol. 2011;108:918–23.

    Article  Google Scholar 

  30. Libby P, Ridker PM, Hansson GK. Progress and challenges in translating the biology of atherosclerosis. Nature. 2011;473:317–25.

    Article  CAS  Google Scholar 

  31. Gomez D, Owens G. Smooth muscle cell phenotypic switching in atherosclerosis. Cardiovasc Res. 2012;95:156–64.

    Article  CAS  Google Scholar 

  32. Falk E, Nakano M, Bentzon JF, Finn AV, Virmani R. Update on acute coronary syndromes: the pathologists’ view. Eur Heart J. 2013;34:719–28.

    Article  CAS  Google Scholar 

  33. Falk E. Coronary thrombosis: pathogenesis and clinical manifestations. Am J Cardiol. 1991;68:28B-35B.

    Article  CAS  Google Scholar 

  34. Reininger AJ, Bernlochner I, Penz SM, et al. A 2-step mechanism of arterial thrombus formation induced by human atherosclerotic plaques. J Am Coll Cardiol. 2010;55:1147–58.

    Article  CAS  Google Scholar 

  35. Falk E. Dynamics in thrombus formation. Ann N Y Acad Sci. 1992;667:204–23.

    Article  CAS  Google Scholar 

  36. Ruggeri ZM. Platelets in atherothrombosis. Nat Med. 2002;8:1227–34.

    Article  CAS  Google Scholar 

  37. Verouden NJ, Kramer MC, Li X, et al. Histopathology of aspirated thrombus and its association with ST-segment recovery in patients undergoing primary percutaneous coronary intervention with routine thrombus aspiration. Catheter Cardiovasc Interv. 2011;77:35–42.

    Article  Google Scholar 

  38. Kramer MC, van der Wal AC, Koch KT, et al. Histopathological features of aspirated thrombi after primary percutaneous coronary intervention in patients with ST-Elevation myocardial infarction. PLoS One. 2009;4:2–7.

    Article  Google Scholar 

  39. Sumaya W, Wallentin L, James SK, et al. Fibrin clot properties independently predict adverse clinical outcome following acute coronary syndrome: a PLATO substudy. Eur Heart J. 2018;39:1078–85.

    Article  CAS  Google Scholar 

  40. Alam SR, Newby DE, Henriksen PA. Role of the endogenous elastase inhibitor, elafin, in cardiovascular injury: from epithelium to endothelium. Biochem Pharmacol. 2012;83:695–704.

    Article  CAS  Google Scholar 

  41. Rijken DC, Lijnen HR. New insights into the molecular mechanisms of the fibrinolytic system. J Thromb Haemost. 2009;7:4–13.

    Article  CAS  Google Scholar 

  42. Drew BJ, Pelter MM, Adams MG. Frequency, characteristics, and clinical significance of transient ST segment elevation in patients with acute coronary syndromes. Eur Heart J. 2002;23:941–7.

    Article  CAS  Google Scholar 

  43. Arroyo Úcar E, Domínguez-Rodríguez A, Juárez Prera R, et al. Differential characteristics of patients with acute coronary syndrome without ST-segment elevation compared to those with transient ST-segment elevation. Med intensiva. 2011;35:270–3.

    Article  Google Scholar 

  44. Patel JH, Gupta R, Roe MT, Peng SA, Wiviott SD, Saucedo JF. Influence of presenting electrocardiographic findings on the treatment and outcomes of patients with non-ST-segment elevation myocardial infarction. Am J Cardiol. 2014;113:256–61.

    Article  Google Scholar 

  45. Ownbey M, Suffoletto B, Frisch A, Guyette FX, Martin-Gill C. Prevalence and interventional outcomes of patients with resolution of ST-segment elevation between prehospital and in-hospital ECG. Prehosp Emerg Care. 2014;18:174–9.

    Article  Google Scholar 

  46. Leibowitz D, Gerganski P, Nowatzky J, Weiss AT, Rott D. Relation of spontaneous reperfusion in ST-elevation myocardial infarction to more distal coronary culprit narrowings. Am J Cardiol. 2008;101:308–10.

    Article  Google Scholar 

  47. Sakariassen KS, Orning L, Turitto VT. The impact of bloosd shear rate on arterial thrombus formation. Futur Sci OA. 2015;1:FSO30.

    Article  Google Scholar 

  48. Nesbitt WS, Westein E, Tovar-Lopez FJ, et al. A shear gradient-dependent platelet aggregation mechanism drives thrombus formation. Nat Med. 2009;15:665–73.

    Article  CAS  Google Scholar 

  49. Gorog DA. Potentiation of thrombus instability: a contributory mechanism to the effectiveness of antithrombotic medications. J Thromb Thrombolysis. 2018;45:593–602.

    Article  CAS  Google Scholar 

  50. Savage B, Almus-Jacobs F, Ruggeri ZM. Specific synergy of multiple substrate-receptor interactions in platelet thrombus formation under flow. Cell. 1998;94:657–66.

    Article  CAS  Google Scholar 

  51. Huang P, Hellums J. Aggregation and disaggregation kinetics of human blood platelets: part II Shear-induced platelet aggregation. Biophys J. 1993;65:344–53.

    Article  CAS  Google Scholar 

  52. Shi X, Yang J, Huang J, et al. Effects of different shear rates on the attachment and detachment of platelet thrombi. Mol Med Rep. 2016;13:2447–56.

    Article  CAS  Google Scholar 

  53. Gorog D, Fayad Z, Fuster V. Arterial thrombus stability: does it matter and can we detect it? J Am Coll Cardiol. 2017;70:2036–47.

    Article  Google Scholar 

  54. Li M, Hotaling N, Ku D, Forest C. Microfluidic thrombosis under multiple shear rates and antiplatelet therapy doses. PLoS One. 2014;9:e82493.

    Article  Google Scholar 

  55. Basmadjian D. Embolization: critical thrombus height, shear rates, and pulsatility. patency of blood vessels. J Biomed Mater Res. 1989;23:1315–26.

    Article  CAS  Google Scholar 

  56. Rich J, Cannon C, Murphy S, Qin J, Giugliano R, Braunwald E. Prior aspirin use and outcomes in acute coronary syndromes. J Am Coll Cardiol. 2010;56:1376–85.

    Article  Google Scholar 

  57. Yonetsu T, Lee T, Murai T, et al. Association between prior aspirin use and morphological features of culprit lesions at first presentation of acute coronary syndrome assessed by optical coherence tomography. Circ J. 2017;81:511–9.

    Article  CAS  Google Scholar 

  58. Zeymer U, Mochmann H-C, Mark B, et al. Double-blind, randomized, prospective comparison of loading doses of 600 mg clopidogrel versus 60 mg prasugrel in patients with acute ST-segment elevation myocardial infarction scheduled for primary percutaneous intervention. JACC Cardiovasc Interv. 2015;8:147–54.

    Article  Google Scholar 

  59. Bailleul C, Puymirat E, Aissaoui N, et al. Factors associated with infarct-related artery patency before primary percutaneous coronary intervention for ST-elevation myocardial infarction (from the FAST-MI 2010 Registry). Am J Cardiol. 2016;117:17–21.

    Article  Google Scholar 

  60. Montalescot G, Barragan P, Wittenberg O, et al. Platelet glycoprotein IIb/IIIa inhibition with coronary stenting for acute myocardial infarction. N Engl J Med. 2001;344:1895–903.

    Article  CAS  Google Scholar 

  61. Montalescot G, Borentain M, Payot L, Collet JP, Thomas D. Early vs late administration of glycoprotein IIb/IIIa inhibitors in primary percutaneous coronary intervention of acute ST-segment elevation myocardial infarction a meta-analysis. JAMA. 2004;292:362–6.

    Article  CAS  Google Scholar 

  62. Gyöngyösi M, Domanovits H, Benzer W, et al. Use of abciximab prior to primary angioplasty in STEMI results in early recanalization of the infarct-related artery and improved myocardial tissue reperfusion - results of the Austrian multi-centre randomized ReoPro-BRIDGING Study. Eur Heart J. 2004;25:2125–33.

    Article  Google Scholar 

  63. Maioli M, Bellandi F, Leoncini M, Toso A, Dabizzi RP. Randomized early versus late abciximab in acute myocardial infarction treated with primary coronary intervention (RELAx-AMI Trial). J Am Coll Cardiol. 2007;49:1517–24.

    Article  CAS  Google Scholar 

  64. Gödicke J, Flather M, Noc M, et al. Early versus periprocedural administration of abciximab for primary angioplasty: a pooled analysis of 6 studies. Am Heart J. 2005;150:1015.

    Article  Google Scholar 

  65. Ellis SG, Tendera M, de Belder MA, et al. Facilitated PCI in patients with ST-elevation myocardial infarction. N Engl J Med. 2008;358:2205–17.

    Article  CAS  Google Scholar 

  66. Heestermans T, van’t Hof A, ten Berg JM, et al. The golden hour of prehospital reperfusion with triple antiplatelet therapy: a sub-analysis from the Ongoing Tirofiban in Myocardial Evaluation 2 (On-TIME 2) trial early initiation of triple antiplatelet therapy. Am Heart J. 2010;160:1079–84.

    Article  CAS  Google Scholar 

  67. Van’t Hof AWJ, Ten Berg J, Heestermans T, et al. Prehospital initiation of tirofiban in patients with ST-elevation myocardial infarction undergoing primary angioplasty (On-TIME 2): a multicentre, double-blind, randomised controlled trial. Lancet. 2008;372:537–46.

    Article  Google Scholar 

  68. De Luca G, Ucci G, Cassetti E, Marino P. Benefits from small molecule administration as compared with abciximab among patients with ST-segment elevation myocardial infarction treated with primary angioplasty: a meta-analysis. J Am Coll Cardiol. 2009;53:1668–73.

    Article  Google Scholar 

  69. Zijlstra F, Ernst N, De Boer MJ, et al. Influence of prehospital administration of aspirin and heparin on initial patency of the infarct-related artery in patients with acute ST elevation myocardial infarction. J Am Coll Cardiol. 2002;39:1733–7.

    Article  CAS  Google Scholar 

  70. Chung WY, Han MJ, Cho YS, et al. Effects of the early administration of heparin in patients with ST-elevation myocardial infarction treated by primary angioplasty. Circ J. 2007;71:862–7.

    Article  CAS  Google Scholar 

  71. Giralt T, Carrillo X, Rodriguez-Leor O, et al. Time-dependent effects of unfractionated heparin in patients with ST-elevation myocardial infarction transferred for primary angioplasty. Int J Cardiol. 2015;198:70–4.

    Article  Google Scholar 

  72. Karlsson S, Andell P, Mohammad MA, Koul S, Olivecrona GK, James SK, Fröbert O, Erlinge D. Editor’s Choice- Heparin pre-treatment in patients with ST-segment elevation myocardial infarction and the risk of intracoronary thrombus and total vessel occlusion. Insights from the TASTE trial. Eur Heart J Acute Cardiovasc Care. 2019;8:15–23.

    Article  Google Scholar 

  73. Sejersten M, Nielsen SL, Engstrøm T, Jørgensen E, Clemmensen P. Feasibility and safety of prehospital administration of bivalirudin in patients with ST-elevation myocardial infarction. Am J Cardiol. 2009;103:1635–40.

    Article  CAS  Google Scholar 

  74. Kubica J, Adamski P, Ostrowska M, et al. Morphine delays and attenuates ticagrelor exposure and action in patients with myocardial infarction: the randomized, double-blind, placebo-controlled IMPRESSION trial. Eur Heart J. 2016;37:245–52.

    Article  CAS  Google Scholar 

  75. Silvain J, Storey RF, Cayla G, et al. P2Y12 receptor inhibition and effect of morphine in patients undergoing primary PCI for ST-segment elevation myocardial infarction. Thromb Haemost. 2016;116:369–78.

    Article  Google Scholar 

  76. Montalescot G, Van’t Hof AW, Lapostolle F, et al. Prehospital ticagrelor in ST-segment elevation myocardial infarction. N Engl J Med. 2014;371:1016–27.

    Article  Google Scholar 

  77. de Waha S, Eitel I, Desch S, et al. Intravenous morphine administration and reperfusion success in ST-elevation myocardial infarction: insights from cardiac magnetic resonance imaging. Clin Res Cardiol. 2015;104:727–34.

    Article  Google Scholar 

  78. Farag M, Spinthakis N, Srinivasan M, Sullivan K, Wellsted D, Gorog D. Morphine analgesia pre-PPCI is associated with prothrombotic state, reduced spontaneous reperfusion and greater infarct size. Thromb Haemost. 2018;118:601–12.

    Article  Google Scholar 

  79. Fefer P, Beigel R, Atar S, et al. Outcomes of patients presenting with clinical indices of spontaneous reperfusion in ST-elevation acute coronary syndrome undergoing deferred angiography. J Am Heart Assoc. 2017;6:e004552.

    Article  Google Scholar 

  80. Uriel N, Moravsky G, Blatt A, et al. Acute myocardial infarction with spontaneous reperfusion: clinical characteristics and optimal timing for revascularization. Isr Med Assoc J. 2007;9:243–6.

    Google Scholar 

  81. Meneveau N, Séronde MF, Descotes-Genon V, et al. Immediate versus delayed angioplasty in infarct-related arteries with TIMI III flow and ST segment recovery: a matched comparison in acute myocardial infarction patients. Clin Res Cardiol. 2009;98:257–64.

    Article  Google Scholar 

  82. Janssens GN, van der Hoeven NW, Lemkes JS, et al. 1-year outcomes of delayed versus immediate intervention in patients with transient ST-segment elevation myocardial infarction. JACC Cardiovasc Interv. 2019;12:2272–82.

    Article  Google Scholar 

  83. Christian TF, Milavetz JJ, Miller TD, Clements IP, Holmes DR, Gibbons RJ. Prevalence of spontaneous reperfusion and associated myocardial salvage in patients with acute myocardial infarction. Am Heart J. 1998;135:421–7.

    Article  CAS  Google Scholar 

  84. Ross AM, Coyne KS, Reiner JS, et al. A randomized trial comparing primary angioplasty with a strategy of short-acting thrombolysis and immediate planned rescue angioplasty in acute myocardial infarction: The PACT trial. J Am Coll Cardiol. 1999;34:1954–62.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

MF conceived the idea and wrote the first draft. MF, MP, NS and YG did the literature search and data interpretation. ME and DAG contributed to critical analysis. All authors discussed the results and contributed to the final manuscript.

Corresponding author

Correspondence to Mohamed Farag.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 46 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farag, M., Peverelli, M., Spinthakis, N. et al. Spontaneous Reperfusion in Patients with Transient ST-Elevation Myocardial Infarction—Prevalence, Importance and Approaches to Management. Cardiovasc Drugs Ther 37, 169–180 (2023). https://doi.org/10.1007/s10557-021-07226-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-021-07226-7

Keywords

Navigation