Skip to main content
Log in

Maxacalcitol (22-Oxacalcitriol (OCT)) Retards Progression of Left Ventricular Hypertrophy with Renal Dysfunction Through Inhibition of Calcineurin-NFAT Activity

  • Original Article
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Purpose

Left ventricular hypertrophy (LVH) is a cardiovascular complication highly prevalent in patients with chronic kidney disease (CKD). Previous studies analyzing 1α-hydroxylase or vitamin D receptor (Vdr) knockout mice revealed active vitamin D as a promising agent inhibiting LVH progression. Paricalcitol, an active vitamin D analog, failed to suppress the progression of LV mass index (LVMI) in pre-dialysis patients with CKD. As target genes of activated VDR differ depending on its agonists, we examined the effects of maxacalcitol (22-oxacalcitriol: OCT), a less calcemic active vitamin D analog, on LVH in hemodialysis patients and animal LVH models with renal insufficiency.

Methods

In retrospective cohort study, patients treated with OCT who underwent hemodialysis were enrolled. Using cardiac echocardiography, LV mass was evaluated by the area-length method. In animal study, angiotensin II (Ang II)-infused Wister rats with heminephrectomy or Ang II-stimulated neonatal rat ventricular myocytes (NRVM) were treated with OCT.

Results

OCT significantly inhibited the progression of LVMI in hemodialysis patients. In Ang II-infused heminephrectomized rats, OCT suppressed the progression of LVH in a blood pressure-independent manner. OCT also suppressed the activity of calcineurin in the left ventricle of model rats. Specifically, OCT reduced the protein levels of calcineurin A, but not the mRNA levels of Ppp3ca (calcineurin Aα). Luciferase assays showed that OCT increased the promoter activity of Fbxo32 (atrogin1), an E3 ubiquitin ligase targeting calcineurin A. Finally, OCT promoted ubiquitination and degradation of calcineurin A.

Conclusion

Our works indicated that OCT retards progression of LVH through calcineurin-NFAT pathway, which reveal a novel aspect of OCT in attenuating pathological LVH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data supporting the findings of this study are available on request.

References

  1. Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med. 2004;351(13):1296–305.

    CAS  PubMed  Google Scholar 

  2. Das M, Aronow WS, McClung JA, Belkin RN. Increased prevalence of coronary artery disease, silent myocardial ischemia, complex ventricular arrhythmias, atrial fibrillation, left ventricular hypertrophy, mitral annular calcium, and aortic valve calcium in patients with chronic renal insufficiency. Cardiol Rev. 2006;14(1):14–7.

    PubMed  Google Scholar 

  3. Nakano T, Ninomiya T, Sumiyoshi S, Fujii H, Doi Y, Hirakata H, et al. Association of kidney function with coronary atherosclerosis and calcification in autopsy samples from Japanese elders: the Hisayama study. Am J Kidney Dis. 2010;55(1):21–30.

    PubMed  Google Scholar 

  4. Paoletti E, Bellino D, Cassottana P, Rolla D, Cannella G. Left ventricular hypertrophy in nondiabetic predialysis CKD. Am J Kidney Dis. 2005;46(2):320–7.

    PubMed  Google Scholar 

  5. Levin A, Thompson CR, Ethier J, Carlisle EJ, Tobe S, Mendelssohn D, et al. Left ventricular mass index increase in early renal disease: impact of decline in hemoglobin. Am J Kidney Dis. 1999;34(1):125–34.

    CAS  PubMed  Google Scholar 

  6. Zoccali C, Benedetto FA, Mallamaci F, Tripepi G, Giacone G, Stancanelli B, et al. Left ventricular mass monitoring in the follow-up of dialysis patients: prognostic value of left ventricular hypertrophy progression. Kidney Int. 2004;65(4):1492–8.

    PubMed  Google Scholar 

  7. Untersteller K, Girerd N, Duarte K, Rogacev KS, Seiler-Mussler S, Fliser D, et al. NT-proBNP and echocardiographic parameters for prediction of cardiovascular outcomes in patients with CKD stages G2-G4. Clin J Am Soc Nephrol. 2016;11(11):1978–88.

    PubMed  PubMed Central  Google Scholar 

  8. Xiang W, Kong J, Chen S, Cao LP, Qiao G, Zheng W, et al. Cardiac hypertrophy in vitamin D receptor knockout mice: role of the systemic and cardiac renin-angiotensin systems. Am J Physiol Endocrinol Metab. 2005;288(1):E125–32.

    CAS  PubMed  Google Scholar 

  9. Zhou C, Lu F, Cao K, Xu D, Goltzman D, Miao D. Calcium-independent and 1,25(OH)2D3-dependent regulation of the renin-angiotensin system in 1alpha-hydroxylase knockout mice. Kidney Int. 2008;74(2):170–9.

    CAS  PubMed  Google Scholar 

  10. Dardenne O, Prud'homme J, Arabian A, Glorieux FH, St-Arnaud R. Targeted inactivation of the 25-hydroxyvitamin D(3)-1(alpha)-hydroxylase gene (CYP27B1) creates an animal model of pseudovitamin D-deficiency rickets. Endocrinology. 2001;142(7):3135–41.

    CAS  PubMed  Google Scholar 

  11. Nakano C, Hamano T, Fujii N, Matsui I, Tomida K, Mikami S, et al. Combined use of vitamin D status and FGF23 for risk stratification of renal outcome. Clin J Am Soc Nephrol. 2012;7(5):810–9.

    CAS  PubMed  Google Scholar 

  12. Park M, Hsu CY, Li Y, Mishra RK, Keane M, Rosas SE, et al. Associations between kidney function and subclinical cardiac abnormalities in CKD. J Am Soc Nephrol. 2012;23(10):1725–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Bodyak N, Ayus JC, Achinger S, Shivalingappa V, Ke Q, Chen YS, et al. Activated vitamin D attenuates left ventricular abnormalities induced by dietary sodium in Dahl salt-sensitive animals. Proc Natl Acad Sci U S A. 2007;104(43):16810–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Thadhani R, Appelbaum E, Pritchett Y, Chang Y, Wenger J, Tamez H, et al. Vitamin D therapy and cardiac structure and function in patients with chronic kidney disease: the PRIMO randomized controlled trial. JAMA. 2012;307(7):674–84.

    CAS  PubMed  Google Scholar 

  15. Takeyama K, Masuhiro Y, Fuse H, Endoh H, Murayama A, Kitanaka S, et al. Selective interaction of vitamin D receptor with transcriptional coactivators by a vitamin D analog. Mol Cell Biol. 1999;19(2):1049–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Jones G, Strugnell SA, DeLuca HF. Current understanding of the molecular actions of vitamin D. Physiol Rev. 1998;78(4):1193–231.

    CAS  PubMed  Google Scholar 

  17. Inoue K, Matsui I, Hamano T, Fujii N, Shimomura A, Nakano C, et al. Maxacalcitol ameliorates tubulointerstitial fibrosis in obstructed kidneys by recruiting PPM1A/VDR complex to pSmad3. Lab Investig. 2012;92(12):1686–97.

    CAS  PubMed  Google Scholar 

  18. Matsui I, Hamano T, Tomida K, Inoue K, Takabatake Y, Nagasawa Y, et al. Active vitamin D and its analogue, 22-oxacalcitriol, ameliorate puromycin aminonucleoside-induced nephrosis in rats. Nephrol Dial Transplant. 2009;24(8):2354–61.

    CAS  PubMed  Google Scholar 

  19. Molkentin JD, Lu JR, Antos CL, Markham B, Richardson J, Robbins J, et al. A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell. 1998;93(2):215–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Yang J, Rothermel B, Vega RB, Frey N, McKinsey TA, Olson EN, et al. Independent signals control expression of the calcineurin inhibitory proteins MCIP1 and MCIP2 in striated muscles. Circ Res. 2000;87(12):E61–8.

    CAS  PubMed  Google Scholar 

  21. Bush E, Fielitz J, Melvin L, Martinez-Arnold M, McKinsey TA, Plichta R, et al. A small molecular activator of cardiac hypertrophy uncovered in a chemical screen for modifiers of the calcineurin signaling pathway. Proc Natl Acad Sci U S A. 2004;101(9):2870–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Tamaki S, Mano T, Sakata Y, Ohtani T, Takeda Y, Kamimura D, et al. Interleukin-16 promotes cardiac fibrosis and myocardial stiffening in heart failure with preserved ejection fraction. PLoS One. 2013;8(7):e68893.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Fu HY, Okada K, Liao Y, Tsukamoto O, Isomura T, Asai M, et al. Ablation of C/EBP homologous protein attenuates endoplasmic reticulum-mediated apoptosis and cardiac dysfunction induced by pressure overload. Circulation. 2010;122(4):361–9.

    CAS  PubMed  Google Scholar 

  24. Kusunoki Y, Matsui I, Hamano T, Shimomura A, Mori D, Yonemoto S, et al. Excess 25-hydroxyvitamin D3 exacerbates tubulointerstitial injury in mice by modulating macrophage phenotype. Kidney Int. 2015;88(5):1013–29.

    CAS  PubMed  Google Scholar 

  25. Hashimoto N, Matsui I, Ishizuka S, Inoue K, Matsumoto A, Shimada K, et al. Lithocholic acid increases intestinal phosphate and calcium absorption in a vitamin D receptor dependent but transcellular pathway independent manner. Kidney Int. 2020;97(6):1164–80.

    CAS  PubMed  Google Scholar 

  26. Matsui I, Hamano T, Mikami S, Inoue K, Shimomura A, Nagasawa Y, et al. Retention of fetuin-A in renal tubular lumen protects the kidney from nephrocalcinosis in rats. Am J Physiol Renal Physiol. 2013;304(6):F751–60.

    CAS  PubMed  Google Scholar 

  27. Matsui I, Hamano T, Mikami S, Fujii N, Takabatake Y, Nagasawa Y, et al. Fully phosphorylated fetuin-A forms a mineral complex in the serum of rats with adenine-induced renal failure. Kidney Int. 2009;75(9):915–28.

    CAS  PubMed  Google Scholar 

  28. Yamashiro T, Kuge H, Zhang J, Honke K. Calcineurin mediates the angiotensin II-induced aldosterone synthesis in the adrenal glands by up-regulation of transcription of the CYP11B2 gene. J Biochem. 2010;148(1):115–23.

    CAS  PubMed  Google Scholar 

  29. Onohara N, Nishida M, Inoue R, Kobayashi H, Sumimoto H, Sato Y, et al. TRPC3 and TRPC6 are essential for angiotensin II-induced cardiac hypertrophy. EMBO J. 2006;25(22):5305–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Yamamoto Y, Hoshino Y, Ito T, Nariai T, Mohri T, Obana M, et al. Atrogin-1 ubiquitin ligase is upregulated by doxorubicin via p38-MAP kinase in cardiac myocytes. Cardiovasc Res. 2008;79(1):89–96.

    CAS  PubMed  Google Scholar 

  31. Matsui I, Oka T, Kusunoki Y, Mori D, Hashimoto N, Matsumoto A, et al. Cardiac hypertrophy elevates serum levels of fibroblast growth factor 23. Kidney Int. 2018;94(1):60–71.

    CAS  PubMed  Google Scholar 

  32. Choi SR, Lim JH, Kim MY, Hong YA, Chung BH, Chung S, et al. Cinacalcet improves endothelial dysfunction and cardiac hypertrophy in patients on hemodialysis with secondary hyperparathyroidism. Nephron Clin Pract. 2012;122(1–2):1–8.

    CAS  PubMed  Google Scholar 

  33. Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, et al. Recommendations for chamber quantification: a report from the American Society of Echocardiography's Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr. 2005;18(12):1440–63.

    PubMed  Google Scholar 

  34. Repo JM, Rantala IS, Honkanen TT, Mustonen JT, Koobi P, Tahvanainen AM, et al. Paricalcitol aggravates perivascular fibrosis in rats with renal insufficiency and low calcitriol. Kidney Int. 2007;72(8):977–84.

    CAS  PubMed  Google Scholar 

  35. Takeuchi A, Reddy GS, Kobayashi T, Okano T, Park J, Sharma S. Nuclear factor of activated T cells (NFAT) as a molecular target for 1alpha,25-dihydroxyvitamin D3-mediated effects. J Immunol. 1998;160(1):209–18.

    CAS  PubMed  Google Scholar 

  36. Fuentes JJ, Pritchard MA, Estivill X. Genomic organization, alternative splicing, and expression patterns of the DSCR1 (Down syndrome candidate region 1) gene. Genomics. 1997;44(3):358–61.

    CAS  PubMed  Google Scholar 

  37. Ni YG, Berenji K, Wang N, Oh M, Sachan N, Dey A, et al. Foxo transcription factors blunt cardiac hypertrophy by inhibiting calcineurin signaling. Circulation. 2006;114(11):1159–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Li HH, Kedar V, Zhang C, McDonough H, Arya R, Wang DZ, et al. Atrogin-1/muscle atrophy F-box inhibits calcineurin-dependent cardiac hypertrophy by participating in an SCF ubiquitin ligase complex. J Clin Invest. 2004;114(8):1058–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Fleet JC, DeSmet M, Johnson R, Li Y. Vitamin D and cancer: a review of molecular mechanisms. Biochem J. 2012;441(1):61–76.

    CAS  PubMed  Google Scholar 

  40. Zhao XY, Eccleshall TR, Krishnan AV, Gross C, Feldman D. Analysis of vitamin D analog-induced heterodimerization of vitamin D receptor with retinoid X receptor using the yeast two-hybrid system. Mol Endocrinol. 1997;11(3):366–78.

    CAS  PubMed  Google Scholar 

  41. Mangelsdorf DJ, Evans RM. The RXR heterodimers and orphan receptors. Cell. 1995;83(6):841–50.

    CAS  PubMed  Google Scholar 

  42. Uchiyama Y, Higuchi Y, Takeda S, Masaki T, Shira-Ishi A, Sato K, et al. ED-71, a vitamin D analog, is a more potent inhibitor of bone resorption than alfacalcidol in an estrogen-deficient rat model of osteoporosis. Bone. 2002;30(4):582–8.

    CAS  PubMed  Google Scholar 

  43. Cannella G, Paoletti E, Delfino R, Peloso G, Molinari S, Traverso GB. Regression of left ventricular hypertrophy in hypertensive dialyzed uremic patients on long-term antihypertensive therapy. Kidney Int. 1993;44(4):881–6.

    CAS  PubMed  Google Scholar 

  44. Pascual J, Berger SP, Chadban SJ, Citterio F, Kamar N, Hesselink DA, et al. Evidence-based practice: guidance for using everolimus in combination with low-exposure calcineurin inhibitors as initial immunosuppression in kidney transplant patients. Transplant Rev (Orlando). 2019;33(4):191–9.

    Google Scholar 

  45. Song YH, Cai GY, Xiao YF, Wang YP, Yuan BS, Xia YY, et al. Efficacy and safety of calcineurin inhibitor treatment for IgA nephropathy: a meta-analysis. BMC Nephrol. 2017;18(1):61.

    PubMed  PubMed Central  Google Scholar 

  46. Issa N, Kukla A, Ibrahim HN. Calcineurin inhibitor nephrotoxicity: a review and perspective of the evidence. Am J Nephrol. 2013;37(6):602–12.

    CAS  PubMed  Google Scholar 

  47. Li YC, Kong J, Wei M, Chen ZF, Liu SQ, Cao LP. 1,25-Dihydroxyvitamin D(3) is a negative endocrine regulator of the renin-angiotensin system. J Clin Invest. 2002;110(2):229–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Chen S, Law CS, Grigsby CL, Olsen K, Hong TT, Zhang Y, et al. Cardiomyocyte-specific deletion of the vitamin D receptor gene results in cardiac hypertrophy. Circulation. 2011;124(17):1838–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Girgis CM, Cha KM, So B, Tsang M, Chen J, Houweling PJ, et al. Mice with myocyte deletion of vitamin D receptor have sarcopenia and impaired muscle function. J Cachexia Sarcopenia Muscle. 2019;10:1228–40.

    PubMed  PubMed Central  Google Scholar 

  50. Lemmila S, Saha H, Virtanen V, Ala-Houhala I, Pasternack A. Effect of intravenous calcitriol on cardiac systolic and diastolic function in patients on hemodialysis. Am J Nephrol. 1998;18(5):404–10.

    CAS  PubMed  Google Scholar 

  51. Park CW, Oh YS, Shin YS, Kim CM, Kim YS, Kim SY, et al. Intravenous calcitriol regresses myocardial hypertrophy in hemodialysis patients with secondary hyperparathyroidism. Am J Kidney Dis. 1999;33(1):73–81.

    CAS  PubMed  Google Scholar 

  52. Sandri M, Sandri C, Gilbert A, Skurk C, Calabria E, Picard A, et al. Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell. 2004;117(3):399–412.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. McKenna NJ, O'Malley BW. Combinatorial control of gene expression by nuclear receptors and coregulators. Cell. 2002;108(4):465–74.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Ms. Naoko Horimoto for her technical assistance. This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan (no.25870408) to KI, a grant from The Kidney Foundation, Japan (JKFB 13-36) to KI, and maxacalcitol (22-oxacalcitriol: OCT) was kindly provided by Chugai Pharmaceutical Co., Ltd.

Funding

This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan (no.25870408) to KI, a grant from The Kidney Foundation, Japan (JKFB 13–36) to KI and grants from Chugai Pharmaceutical Co., Ltd.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Kazunori Inoue, Isao Matsui, Keiji Okuda, Yasumasa Tsukamoto, Ayumi Matsumoto, Karin Shimada, Seiichi Yasuda, Yusuke Katsuma, Masaru Tanaka, Noriko Tanaka, and Takayuki Hamano. The first draft of the manuscript was written by Kazunori Inoue and Isao Matsui and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Isao Matsui.

Ethics declarations

Conflict of Interest

The Department of Inter-Organ Communication Research in Kidney Disease, Osaka University Graduate School of Medicine, received grants from Chugai Pharmaceutical Co., Ltd. The other authors have no conflicts of interest.

Ethics Approval

This retrospective cohort study was approved by the Ethics Committee (approval number: 2020-02) at Tanaka Kitanoda Hospital (Sakai-ku, Osaka, Japan).

Consent to Participate

Patients who did not declare refusal to participation according to opt-out policy were enrolled in this retrospective study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 688 kb)

ESM 2

(PDF 144 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inoue, K., Matsui, I., Hamano, T. et al. Maxacalcitol (22-Oxacalcitriol (OCT)) Retards Progression of Left Ventricular Hypertrophy with Renal Dysfunction Through Inhibition of Calcineurin-NFAT Activity. Cardiovasc Drugs Ther 35, 381–397 (2021). https://doi.org/10.1007/s10557-020-07111-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-020-07111-9

Keywords

Navigation