Relative Efficacy of Sacubitril-Valsartan, Vericiguat, and SGLT2 Inhibitors in Heart Failure with Reduced Ejection Fraction: a Systematic Review and Network Meta-Analysis



Sacubitril/valsartan, vericiguat, and the sodium-glucose co-transporter-2 inhibitors (SGLT2i) dapagliflozin and empagliflozin proved effective in phase 3 trials on heart failure with reduced ejection fraction (HFrEF).


We compared the treatment arms (sacubitril/valsartan, vericiguat, and SGLT2i) with the respective control arms (standard-of-care [SOC]) through a network meta-analysis of the phase 3 trials (PARADIGM-HF, VICTORIA, DAPA-HF, EMPEROR-Reduced), a phase 2 trial on vericiguat and the HFrEF subgroup of DECLARE-TIMI 58.


There was a trend towards decreased risk of cardiovascular (CV) death or HF hospitalization with SGLT2i than sacubitril/valsartan (HR 0.92, 95% CI 0.81 to 1.05) and vericiguat (HR 0.83, 95% CI 0.73 to 0.94). A non-significant effect of SGLT2i on CV mortality compared to sacubitril/valsartan (HR 1.04, 95% CI 0.88 to 1.24) and vericiguat (HR 0.88, 95% CI 0.63 to 1.22) was found. SGLT2i demonstrated the greatest effect on HF hospitalization (HR 0.69, 95% CI 0.62 to 0.77) over the SOC, as well as a significant benefit over vericiguat (HR 0.77, 95% CI 0.66 to 0.89), but not over sacubitril/valsartan (HR 0.87, 95% CI 0.75 to 1.02). SGLT2i were ranked as the most effective therapy, followed by sacubitril/valsartan and vericiguat.


Based on an indirect comparison, SGLT2i therapy is not associated with a significantly lower risk of CV death or HF hospitalization or CV death alone compared to sacubitril/valsartan or vericiguat. The risk of HF hospitalization does not differ significantly between patients on SGLT2i or sacubitril/valsartan, while dapagliflozin is superior to vericiguat.

Registration Number


This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2



Angiotensin-converting enzyme inhibitor/angiotensin receptor blocker


Confidence interval




Heart failure with reduced ejection fraction


Hazard ratio


Mineralocorticoid receptor antagonist


Network meta-analysis


Natriuretic peptide


Randomized controlled trial




  1. 1.

    Metra M, Teerlink JR. Heart failure. Lancet. 2017;390:1981–95.

    Article  Google Scholar 

  2. 2.

    McMurray JJ, Packer M, Desai AS, Gong J, Lefkowitz MP, Rizkala AR, et al. PARADIGM-HF Investigators and Committees. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med. 2014;371:993–1004.

    Article  Google Scholar 

  3. 3.

    Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS, et al. 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2016;37:2129–200.

    Article  Google Scholar 

  4. 4.

    Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr, Colvin MM, et al. 2017 ACC/AHA/HFSA focused update of the 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. Circulation. 2017;136:e137–61.

    Article  Google Scholar 

  5. 5.

    Armstrong PW, Pieske B, Anstrom KJ, Ezekowitz J, Hernandez AF, Butler J, et al. Vericiguat in patients with heart failure and reduced ejection fraction. N Engl J Med. 2020;382:1883–93.

    CAS  Article  Google Scholar 

  6. 6.

    McMurray JJV, Solomon SD, Inzucchi SE, Køber L, Kosiborod MN, Martinez FA, et al. DAPA-HF Trial Committees and Investigators. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med. 2019;381:1995–2008.

    CAS  Article  Google Scholar 

  7. 7.

    Packer M, Anker SD, Butler J, Filippatos G, Pocock SJ, Carson P, Januzzi J, Verma S, Tsutsui H, Brueckmann M, Jamal W, Kimura K, Schnee J, Zeller C, Cotton D, Bocchi E, Böhm M, Choi DJ, Chopra V, Chuquiure E, Giannetti N, Janssens S, Zhang J, Gonzalez Juanatey JR, Kaul S, Brunner-La Rocca HP, Merkely B, Nicholls SJ, Perrone S, Pina I, Ponikowski P, Sattar N, Senni M, Seronde MF, Spinar J, Squire I, Taddei S, Wanner C, Zannad F. EMPEROR-reduced trial investigators. Cardiovascular and renal outcomes with empagliflozin in heart failure. N Engl J Med. 2020;383(15):1413–1424.

  8. 8.

    Volpe M, Carnovali M, Mastromarino V. The natriuretic peptides system in the pathophysiology of heart failure: from molecular basis to treatment. Clin Sci. 2016;130:57–77.

    CAS  Article  Google Scholar 

  9. 9.

    Bertero E, Prates Roma L, Ameri P, Maack C. Cardiac effects of SGLT2 inhibitors: the sodium hypothesis. Cardiovasc Res. 2018;114:12–8.

    CAS  Article  Google Scholar 

  10. 10.

    Verma S, Rawat S, Ho KL, Wagg CS, Zhang L, Teoh H, et al. Empagliflozin increases cardiac energy production in diabetes: novel translational insights into the heart failure benefits of SGLT2 inhibitors. JACC Basic Transl Sci. 2018;3:575–87.

    Article  Google Scholar 

  11. 11.

    Zannad F, Ferreira JP, Pocock SJ, Anker SD, Butler J, Filippatos G, et al. SGLT2 inhibitors in patients with heart failure with reduced ejection fraction: a meta-analysis of the EMPEROR-Reduced and DAPA-HF trials. Lancet. 2020;396:819–29.

    Article  Google Scholar 

  12. 12.

    Butler J, Anstrom KJ, Armstrong PW. Comparing the benefit of novel therapies across clinical trials: insights from the VICTORIA trial. Circulation. 2020;142(8):717–9.

  13. 13.

    Lumley T. Network meta-analysis for indirect treatment comparisons. Stat Med. 2002;21:2313–24.

    Article  Google Scholar 

  14. 14.

    Caldwell DM, Ades AE, Higgins JP. Simultaneous comparison of multiple treatments: combining direct and indirect evidence. BMJ. 2005;331:897–900.

    Article  Google Scholar 

  15. 15.

    Li T, Puhan MA, Vedula SS, Singh S, Dickersin K. Network meta-analysis-highly attractive but more methodological research is needed. BMC Med. 2011;9:79.

    Article  Google Scholar 

  16. 16.

    Hutton B, Salanti G, Caldwell DM, Chaimani A, Schmid CH, Cameron C, et al. The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: checklist and explanations. Ann Intern Med. 2015;162:777–84.

    Article  Google Scholar 

  17. 17.

    Sterne JAC, Savović J, Page MJ, Elbers RG, Blencowe NS, Boutron I, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ. 2019;366:l4898.

    Article  Google Scholar 

  18. 18.

    Guyatt GH, Oxman AD, Schünemann HJ, Tugwell P, Knottnerus A. GRADE guidelines: a new series of articles in the Journal of Clinical Epidemiology. J Clin Epidemiol. 2011;64:380–2.

    Article  Google Scholar 

  19. 19.

    Jackson D, White IR, Riley RD. A matrix-based method of moments for fitting the multivariate random effects model for meta-analysis and meta-regression. Biom J. 2013;55:231–45.

    Article  Google Scholar 

  20. 20.

    Spineli LM, Kalyvas C, Pateras K. Participants’ outcomes gone missing within a network of interventions: Bayesian modelling strategies. Stat Med. 2019;38:3861–79.

    Article  Google Scholar 

  21. 21.

    Gheorghiade M, Greene SJ, Butler J, Filippatos G, Lam CS, Maggioni AP, et al. Effect of vericiguat, a soluble guanylate cyclase stimulator, on natriuretic peptide levels in patients with worsening chronic heart failure and reduced ejection fraction: the SOCRATES-REDUCED randomized trial. JAMA. 2015;314:2251–62.

    CAS  Article  Google Scholar 

  22. 22.

    Wiviott SD, Raz I, Bonaca MP, Mosenzon O, Kato ET, Cahn A, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2019;380:347–57.

    CAS  Article  Google Scholar 

  23. 23.

    White IR, Barrett JK, Jackson D, Higgins JPT. Consistency and inconsistency in network meta-analysis: model estimation using multivariate meta-regression. Res Synth Methods. 2012;3:111–25.

    Article  Google Scholar 

  24. 24.

    Salanti G. Indirect and mixed-treatment comparison, network, or multiple-treatments meta-analysis: many names, many benefits, many concerns for the next generation evidence synthesis tool. Res Synth Methods. 2012;3:80–97.

    Article  Google Scholar 

  25. 25.

    Chaimani A, Higgins JP, Mavridis D, Spyridonos P, Salanti G. Graphical tools for network meta-analysis in STATA. PLoS One. 2013;8:e76654.

    CAS  Article  Google Scholar 

  26. 26.

    Cannon CP, Pratley R, Dagogo-Jack S, Mancuso J, Huyck S, Masiukiewicz U, Charbonnel B, Frederich R, Gallo S, Cosentino F, Shih WJ, Gantz I, Terra SG, Cherney DZI, McGuire DK; VERTIS CV Investigators. Cardiovascular outcomes with ertugliflozin in type 2 diabetes. N Engl J Med. 2020;383(15):1425–1435.

  27. 27.

    Vardeny O, Miller R, Solomon SD. Combined neprilysin and renin-angiotensin system inhibition for the treatment of heart failure. JACC Heart Fail. 2014;2:663–70.

    Article  Google Scholar 

  28. 28.

    D’Elia E, Iacovoni A, Vaduganathan M, Lorini FL, Perlini S, Senni M. Neprilysin inhibition in heart failure: mechanisms and substrates beyond modulating natriuretic peptides. Eur J Heart Fail. 2017;19:710–7.

    Article  Google Scholar 

  29. 29.

    Tamargo J. Sodium-glucose cotransporter 2 inhibitors in heart failure: potential mechanisms of action, adverse effects and future developments. Eur Cardiol. 2019;14:23–32.

    Article  Google Scholar 

  30. 30.

    Pieske B, Patel MJ, Westerhout CM, Anstrom KJ, Butler J, Ezekowitz J, et al. Baseline features of the VICTORIA (vericiguat global study in subjects with heart failure with reduced ejection fraction) trial. Eur J Heart Fail. 2019;21:1596–604.

    CAS  Article  Google Scholar 

  31. 31.

    Dewan P, Jhund PS, McMurray JJV. VICTORIA in context. Eur J Heart Fail. 2020.

Download references

Author information



Corresponding author

Correspondence to Alberto Aimo.

Ethics declarations

Conflict of Interest

M.E. is one of the 2 Italian national leaders of the VICTORIA trial; the other authors have no conflicts of interest to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material


(DOCX 372 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aimo, A., Pateras, K., Stamatelopoulos, K. et al. Relative Efficacy of Sacubitril-Valsartan, Vericiguat, and SGLT2 Inhibitors in Heart Failure with Reduced Ejection Fraction: a Systematic Review and Network Meta-Analysis. Cardiovasc Drugs Ther (2020).

Download citation


  • Heart failure
  • Sacubitril/valsartan
  • Vericiguat
  • SGLT2-inhibitors
  • Efficacy
  • Network meta-analysis