Skip to main content

Advertisement

Log in

Lipid-Lowering Biotechnological Drugs: from Monoclonal Antibodies to Antisense Therapies—a Clinical Perspective

  • Original Article
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Purpose

While low density lipoprotein cholesterol (LDL-C) remains a key contributor of atherosclerotic cardiovascular disease (ASCVD), additional risk factors identified through epidemiological and genetic studies have ushered in a fertile era of drug discovery in lipid-lowering therapy. Unlike contemporary small molecule medications, many of the novel agents are biologics utilizing monoclonal antibody (mAb) or RNA interference (RNAi) technologies. This report aims to review the evidence to date, focusing on completed and ongoing clinical trials and how these new agents will impact clinical practice.

Methods

We review data from pertinent studies on lipid-lowering biologics in clinical use or have translated to human studies and are undergoing clinical trials.

Results

Several targets affecting lipid metabolism have been identified to be causally associated with ASCVD including proprotein convertase subtilisin/kexin type 9 (PCSK9), angiopoietin-like protein 3 (ANGPTL3), apolipoprotein C3 (APOC3), and lipoprotein (a) (Lp[a]). Biotechnological modalities that have been developed for these targets include mAb, small interfering RNA (siRNA), and anti-sense oligonucleotide (ASO) agents. Agents such as alirocumab and evolocumab have shown efficacy in risk reduction of ASCVD in cardiovascular outcome trials and have been incorporated into evidence-based practice guidelines. Other agents included in this review are in various stages of clinical trials and have shown significant efficacy in the reduction of lipid parameters.

Conclusion

The development of new biologics targeting lipid risk factors will provide clinicians additional tools to reduce the risk for ASCVD. Important factors to consider will be cost-effectiveness and improving methods to personalize treatments to risk factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ference BA, Ginsberg HN, Graham I, Ray KK, Packard CJ, Bruckert E, et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J. 2017;38(32):2459–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Baigent C, Blackwell L, Emberson J, Holland LE, Reith C, Bhala N, et al. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet. 2010;376(9753):1670–81.

    CAS  PubMed  Google Scholar 

  3. Phan BA, Dayspring TD, Toth PP. Ezetimibe therapy: mechanism of action and clinical update. Vasc Health Risk Manag. 2012;8:415–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Saeed A, Ballantyne CM. Bempedoic acid (ETC-1002): a current review. Cardiol Clin. 2018;36(2):257–64.

    PubMed  Google Scholar 

  5. Musunuru K, Kathiresan S. Surprises from genetic analyses of lipid risk factors for atherosclerosis. Circ Res. 2016;118(4):579–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Ference BA, Robinson JG, Brook RD, Catapano AL, Chapman MJ, Neff DR, et al. Variation in PCSK9 and HMGCR and risk of cardiovascular disease and diabetes. N Engl J Med. 2016;375(22):2144–53.

    CAS  PubMed  Google Scholar 

  7. Brautbar A, Leary E, Rasmussen K, Wilson DP, Steiner RD, Virani S. Genetics of familial hypercholesterolemia. Curr Atheroscler Rep. 2015;17(4):491.

    PubMed  Google Scholar 

  8. Hussain A, Ballantyne CM, Saeed A, Virani SS. Triglycerides and ASCVD risk reduction: recent insights and future directions. Curr Atheroscler Rep. 2020;22(7):25.

    CAS  PubMed  Google Scholar 

  9. Macchi C, Sirtori CR, Corsini A, Santos RD, Watts GF, Ruscica M. A new dawn for managing dyslipidemias: the era of rna-based therapies. Pharmacol Res. 2019;150:104413.

    CAS  PubMed  Google Scholar 

  10. Furgurson M, Lagor WR. CRISPR: a promising tool for lipid physiology and therapeutics. Curr Opin Lipidol. 2019;30(3):172–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Schwartz GG, Steg PG, Szarek M, Bhatt DL, Bittner VA, Diaz R, et al. Alirocumab and cardiovascular outcomes after acute coronary syndrome. N Engl J Med. 2018;379(22):2097–107.

    CAS  PubMed  Google Scholar 

  12. Sabatine MS, Giugliano RP, Keech AC, Honarpour N, Wiviott SD, Murphy SA, et al. Evolocumab and clinical outcomes in patients with cardiovascular disease. N Engl J Med. 2017;376(18):1713–22.

    CAS  PubMed  Google Scholar 

  13. Dewey FE, Gusarova V, Dunbar RL, O'Dushlaine C, Schurmann C, Gottesman O, et al. Genetic and pharmacologic inactivation of ANGPTL3 and cardiovascular disease. N Engl J Med. 2017;377(3):211–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Ridker PM, Revkin J, Amarenco P, Brunell R, Curto M, Civeira F, et al. Cardiovascular efficacy and safety of bococizumab in high-risk patients. N Engl J Med. 2017;376(16):1527–39.

    CAS  PubMed  Google Scholar 

  15. Carthew RW, Sontheimer EJ. Origins and mechanisms of miRNAs and siRNAs. Cell. 2009;136(4):642–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Shen X, Corey DR. Chemistry, mechanism and clinical status of antisense oligonucleotides and duplex RNAs. Nucleic Acids Res. 2018;46(4):1584–600.

    CAS  PubMed  Google Scholar 

  17. Huang Y. Preclinical and clinical advances of GalNAc-decorated nucleic acid therapeutics. Mol Ther Nucleic Acids. 2017;6:116–32.

    CAS  PubMed  Google Scholar 

  18. Alexander VJ, Xia S, Hurh E, Hughes SG, O'Dea L, Geary RS, et al. N-acetyl galactosamine-conjugated antisense drug to APOC3 mRNA, triglycerides and atherogenic lipoprotein levels. Eur Heart J. 2019;40(33):2785–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Blom DJ, O'Dea L, Digenio A, Alexander VJ, Karwatowska-Prokopczuk E, Williams KR, et al. Characterizing familial chylomicronemia syndrome: baseline data of the APPROACH study. J Clin Lipidol. 2018;12(5):1234–43.e5.

    PubMed  Google Scholar 

  20. Hu B, Weng Y, Xia XH, Liang XJ, Huang Y. Clinical advances of siRNA therapeutics. J Gene Med. 2019;21(7):e3097.

    PubMed  Google Scholar 

  21. Akdim F, Stroes ES, Sijbrands EJ, Tribble DL, Trip MD, Jukema JW, et al. Efficacy and safety of mipomersen, an antisense inhibitor of apolipoprotein B, in hypercholesterolemic subjects receiving stable statin therapy. J Am Coll Cardiol. 2010;55(15):1611–8.

    CAS  PubMed  Google Scholar 

  22. Fogacci F, Ferri N, Toth PP, Ruscica M, Corsini A, Cicero AFG. Efficacy and safety of mipomersen: a systematic review and meta-analysis of randomized clinical trials. Drugs. 2019;79(7):751–66.

    CAS  PubMed  Google Scholar 

  23. Cameron J, Holla OL, Ranheim T, Kulseth MA, Berge KE, Leren TP. Effect of mutations in the PCSK9 gene on the cell surface LDL receptors. Hum Mol Genet. 2006;15(9):1551–8.

    CAS  PubMed  Google Scholar 

  24. Ruscica M, Corsini A, Ferri N, Banach M, Sirtori CR. Clinical approach to the inflammatory etiology of cardiovascular diseases. Pharmacol Res. 2020;159:104916.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Ruscica M, Tokgozoglu L, Corsini A, Sirtori CR. PCSK9 inhibition and inflammation: a narrative review. Atherosclerosis. 2019;288:146–55.

    CAS  PubMed  Google Scholar 

  26. Giugliano RP, Mach F, Zavitz K, Kurtz C, Im K, Kanevsky E, et al. Cognitive function in a randomized trial of evolocumab. N Engl J Med. 2017;377(7):633–43.

    CAS  PubMed  Google Scholar 

  27. Sabatine MS, De Ferrari GM, Giugliano RP, Huber K, Lewis BS, Ferreira J, et al. Clinical benefit of evolocumab by severity and extent of coronary artery disease: analysis from FOURIER. Circulation. 2018;138(8):756–66.

    CAS  PubMed  Google Scholar 

  28. Bonaca MP, Nault P, Giugliano RP, Keech AC, Pineda AL, Kanevsky E, et al. Low-density lipoprotein cholesterol lowering with evolocumab and outcomes in patients with peripheral artery disease: insights from the FOURIER trial (Further Cardiovascular Outcomes Research With PCSK9 Inhibition in Subjects With Elevated Risk). Circulation. 2018;137(4):338–50.

    CAS  PubMed  Google Scholar 

  29. Raal FJ, Kallend D, Ray KK, Turner T, Koenig W, Wright RS, et al. Inclisiran for the treatment of heterozygous familial hypercholesterolemia. N Engl J Med. 2020;382(16):1520–30.

    CAS  PubMed  Google Scholar 

  30. Ray KK, Wright RS, Kallend D, Koenig W, Leiter LA, Raal FJ, et al. Two phase 3 trials of inclisiran in patients with elevated LDL cholesterol. N Engl J Med. 2020;382(16):1507–19.

    CAS  PubMed  Google Scholar 

  31. Grundy SM, Stone NJ, Bailey AL, Beam C, Birtcher KK, Blumenthal RS, et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA guideline on the management of blood cholesterol: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol. 2019;73(24):e285–350.

    PubMed  Google Scholar 

  32. Jia X, Al Rifai M, Birnbaum Y, Smith SC, Virani SS. The 2018 cholesterol management guidelines: topics in secondary ASCVD prevention clinicians need to know. Curr Atheroscler Rep. 2019;21(6):20.

    PubMed  Google Scholar 

  33. Kazi DS, Virani SS. Implications of cost-effectiveness analyses of lipid-lowering therapies: from the policy-maker’s desk to the patient’s bedside. Prog Cardiovasc Dis. 2019;62(5):406–13.

    PubMed  Google Scholar 

  34. Fonarow GC, van Hout B, Villa G, Arellano J, Lindgren P. Updated cost-effectiveness analysis of evolocumab in patients with very high-risk atherosclerotic cardiovascular disease. JAMA Cardiol. 2019;4(7):691–5.

    PubMed  PubMed Central  Google Scholar 

  35. Musunuru K, Pirruccello JP, Do R, Peloso GM, Guiducci C, Sougnez C, et al. Exome sequencing, ANGPTL3 mutations, and familial combined hypolipidemia. N Engl J Med. 2010;363(23):2220–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang Y, Gusarova V, Banfi S, Gromada J, Cohen JC, Hobbs HH. Inactivation of ANGPTL3 reduces hepatic VLDL-triglyceride secretion. J Lipid Res. 2015;56(7):1296–307.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Pisciotta L, Favari E, Magnolo L, Simonelli S, Adorni MP, Sallo R, et al. Characterization of three kindreds with familial combined hypolipidemia caused by loss-of-function mutations of ANGPTL3. Circ Cardiovasc Genet. 2012;5(1):42–50.

    CAS  PubMed  Google Scholar 

  38. Ahmad Z, Banerjee P, Hamon S, Chan KC, Bouzelmat A, Sasiela WJ, et al. Inhibition of angiopoietin-like protein 3 with a monoclonal antibody reduces triglycerides in hypertriglyceridemia. Circulation. 2019;140(6):470–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Graham MJ, Lee RG, Brandt TA, Tai LJ, Fu W, Peralta R, et al. Cardiovascular and metabolic effects of ANGPTL3 antisense oligonucleotides. N Engl J Med. 2017;377(3):222–32.

    CAS  PubMed  Google Scholar 

  40. Soutar AK, Naoumova RP. Mechanisms of disease: genetic causes of familial hypercholesterolemia. Nat Clin Pract Cardiovasc Med. 2007;4(4):214–25.

    CAS  PubMed  Google Scholar 

  41. Gaudet D, Gipe DA, Pordy R, Ahmad Z, Cuchel M, Shah PK, et al. ANGPTL3 inhibition in homozygous familial hypercholesterolemia. N Engl J Med. 2017;377(3):296–7.

    PubMed  Google Scholar 

  42. Raal F, editor Evinacumab in patients with homozygous familial hypercholesterolemia. American College of Cardiology 2020 Scientific Session; 2020.

  43. Laufs U, Parhofer KG, Ginsberg HN, Hegele RA. Clinical review on triglycerides. Eur Heart J. 2020;41(1):99–109c.

    CAS  PubMed  Google Scholar 

  44. Nordestgaard BG, Benn M, Schnohr P, Tybjaerg-Hansen A. Nonfasting triglycerides and risk of myocardial infarction, ischemic heart disease, and death in men and women. JAMA. 2007;298(3):299–308.

    CAS  PubMed  Google Scholar 

  45. Nordestgaard BG, Stender S, Kjeldsen K. Reduced atherogenesis in cholesterol-fed diabetic rabbits. Giant lipoproteins do not enter the arterial wall. Arteriosclerosis. 1988;8(4):421–8.

    CAS  PubMed  Google Scholar 

  46. Sarwar N, Danesh J, Eiriksdottir G, Sigurdsson G, Wareham N, Bingham S, et al. Triglycerides and the risk of coronary heart disease: 10,158 incident cases among 262,525 participants in 29 Western prospective studies. Circulation. 2007;115(4):450–8.

    CAS  PubMed  Google Scholar 

  47. Ginsberg HN, Le NA, Goldberg IJ, Gibson JC, Rubinstein A, Wang-Iverson P, et al. Apolipoprotein B metabolism in subjects with deficiency of apolipoproteins CIII and AI. Evidence that apolipoprotein CIII inhibits catabolism of triglyceride-rich lipoproteins by lipoprotein lipase in vivo. J Clin Invest. 1986;78(5):1287–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Sehayek E, Eisenberg S. Mechanisms of inhibition by apolipoprotein C of apolipoprotein E-dependent cellular metabolism of human triglyceride-rich lipoproteins through the low density lipoprotein receptor pathway. J Biol Chem. 1991;266(27):18259–67.

    CAS  PubMed  Google Scholar 

  49. Crosby J, Peloso GM, Auer PL, Crosslin DR, Stitziel NO, Lange LA, et al. Loss-of-function mutations in APOC3, triglycerides, and coronary disease. N Engl J Med. 2014;371(1):22–31.

    PubMed  Google Scholar 

  50. Gaudet D, Alexander VJ, Baker BF, Brisson D, Tremblay K, Singleton W, et al. Antisense inhibition of apolipoprotein C-III in patients with hypertriglyceridemia. N Engl J Med. 2015;373(5):438–47.

    CAS  PubMed  Google Scholar 

  51. Pechlaner R, Tsimikas S, Yin X, Willeit P, Baig F, Santer P, et al. Very-low-density lipoprotein-associated apolipoproteins predict cardiovascular events and are lowered by inhibition of APOC-III. J Am Coll Cardiol. 2017;69(7):789–800.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Yang X, Lee SR, Choi YS, Alexander VJ, Digenio A, Yang Q, et al. Reduction in lipoprotein-associated apoC-III levels following volanesorsen therapy: phase 2 randomized trial results. J Lipid Res. 2016;57(4):706–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Gouni-Berthold I, Alexander V, Digenio A, DuFour R, Steinhagen-Thiessen E, Martin S, et al. Apolipoprotein C-III inhibition with volanesorsen in patients with hypertriglyceridemia (COMPASS): a randomized, double-blind, placebo-controlled trial. Atheroscler Suppl. 2017;28:e1–2.

    Google Scholar 

  54. Gelrud A, Digenio A, Alexander V, Williams K, Hsieh A, Gouni-Berthold I, et al. Treatment with volanesorsen (VLN) reduced triglycerides and pancreatitis in patients with FCS and sHTG vs placebo: results of the APPROACH and COMPASS. J Clin Lipidol. 2018;12(2):537.

    Google Scholar 

  55. Arca M, Hsieh A, Soran H, Rosenblit P, O'Dea L, Stevenson M. The effect of volanesorsen treatment on the burden associated with familial chylomicronemia syndrome: the results of the ReFOCUS study. Expert Rev Cardiovasc Ther. 2018;16(7):537–46.

    CAS  PubMed  Google Scholar 

  56. Clarke R, Peden JF, Hopewell JC, Kyriakou T, Goel A, Heath SC, et al. Genetic variants associated with Lp(a) lipoprotein level and coronary disease. N Engl J Med. 2009;361(26):2518–28.

    CAS  PubMed  Google Scholar 

  57. Kamstrup PR, Tybjaerg-Hansen A, Steffensen R, Nordestgaard BG. Genetically elevated lipoprotein(a) and increased risk of myocardial infarction. JAMA. 2009;301(22):2331–9.

    CAS  PubMed  Google Scholar 

  58. Burgess S, Ference BA, Staley JR, Freitag DF, Mason AM, Nielsen SF, et al. Association of LPA variants with risk of coronary disease and the implications for lipoprotein(a)-lowering therapies: a mendelian randomization analysis. JAMA Cardiol. 2018;3(7):619–27.

    PubMed  PubMed Central  Google Scholar 

  59. Saeed A, Sun W, Agarwala A, Virani SS, Nambi V, Coresh J, et al. Lipoprotein(a) levels and risk of cardiovascular disease events in individuals with diabetes mellitus or prediabetes: the Atherosclerosis Risk in Communities study. Atherosclerosis. 2019;282:52–6.

    CAS  PubMed  Google Scholar 

  60. Zewinger S, Kleber ME, Tragante V, McCubrey RO, Schmidt AF, Direk K, et al. Relations between lipoprotein(a) concentrations, LPA genetic variants, and the risk of mortality in patients with established coronary heart disease: a molecular and genetic association study. Lancet Diabetes Endocrinol. 2017;5(7):534–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Virani SS, Brautbar A, Davis BC, Nambi V, Hoogeveen RC, Sharrett AR, et al. Associations between lipoprotein(a) levels and cardiovascular outcomes in black and white subjects: the Atherosclerosis Risk in Communities (ARIC) Study. Circulation. 2012;125(2):241–9.

    CAS  PubMed  Google Scholar 

  62. Saeed A, Virani SS. Lipoprotein(a) and cardiovascular disease: current state and future directions for an enigmatic lipoprotein. Front Biosci (Landmark Ed). 2018;23:1099–112.

    CAS  Google Scholar 

  63. Erqou S, Kaptoge S, Perry PL, Di Angelantonio E, Thompson A, White IR, et al. Lipoprotein(a) concentration and the risk of coronary heart disease, stroke, and nonvascular mortality. JAMA. 2009;302(4):412–23.

    CAS  PubMed  Google Scholar 

  64. Nordestgaard BG, Chapman MJ, Ray K, Borén J, Andreotti F, Watts GF, et al. Lipoprotein(a) as a cardiovascular risk factor: current status. Eur Heart J. 2010;31(23):2844–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Grundy SM, Stone NJ, Bailey AL, Beam C, Birtcher KK, Blumenthal RS, et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA guideline on the management of blood cholesterol: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2019;139(25):e1082–e143.

    PubMed  Google Scholar 

  66. Tardif JC, Rhéaume E, Rhainds D, Dubé MP. Lipoprotein (a), arterial inflammation, and PCSK9 inhibition. Eur Heart J. 2019;40(33):2782–4.

    PubMed  Google Scholar 

  67. Ray KK, Vallejo-Vaz AJ, Ginsberg HN, Davidson MH, Louie MJ, Bujas-Bobanovic M, et al. Lipoprotein(a) reductions from PCSK9 inhibition and major adverse cardiovascular events: Pooled analysis of alirocumab phase 3 trials. Atherosclerosis. 2019;288:194–202.

    CAS  PubMed  Google Scholar 

  68. Bittner VA, Szarek M, Aylward PE, Bhatt DL, Diaz R, Edelberg JM, et al. Effect of alirocumab on lipoprotein(a) and cardiovascular risk after acute coronary syndrome. J Am Coll Cardiol. 2020;75(2):133–44.

    CAS  PubMed  Google Scholar 

  69. Tsimikas S, Karwatowska-Prokopczuk E, Gouni-Berthold I, Tardif JC, Baum SJ, Steinhagen-Thiessen E, et al. Lipoprotein(a) reduction in persons with cardiovascular disease. N Engl J Med. 2020;382(3):244–55.

    CAS  PubMed  Google Scholar 

  70. Gudbjartsson DF, Thorgeirsson G, Sulem P, Helgadottir A, Gylfason A, Saemundsdottir J, et al. Lipoprotein(a) concentration and risks of cardiovascular disease and diabetes. J Am Coll Cardiol. 2019;74(24):2982–94.

    CAS  PubMed  Google Scholar 

  71. ClinicalTrials.org. Assessing the impact of lipoprotein (a) lowering with TQJ230 on major cardiovascular events in patients with CVD (Lp(a)HORIZON). 2020.

  72. ClinicalTrials.org. Safety, tolerability, pharmacokinetics and pharmacodynamics study of AMG 890 in subjects with elevated plasma lipoprotein(a). 2020.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salim S. Virani.

Ethics declarations

Conflict of Interest

SSV: research support (Department of Veterans Affairs, World Heart Federation Tahir and Jooma Family); honorarium: American College of Cardiology (associate editor for Innovations, acc.org); steering committee member (Patient and Provide Assessment of Lipid Management [PALM] registry (no financial remuneration). CMB: grants/research support (significant; paid to institution, not individual) and consultant (modest): Abbott Diagnostic, Denka Seiken, Roche Diagnostic. XJ, JL, and AM do not have any conflicts of interest to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, X., Liu, J., Mehta, A. et al. Lipid-Lowering Biotechnological Drugs: from Monoclonal Antibodies to Antisense Therapies—a Clinical Perspective. Cardiovasc Drugs Ther 35, 1269–1279 (2021). https://doi.org/10.1007/s10557-020-07082-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-020-07082-x

Keywords

Navigation