Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the International Diabetes Federation Diabetes Atlas, 9(th) edition. Diabetes Res Clin Pract. 2019;157:107843. https://doi.org/10.1016/j.diabres.2019.107843.
Article
PubMed
Google Scholar
Morrish NJ, Wang SL, Stevens LK, Fuller JH, Keen H. Mortality and causes of death in the WHO Multinational Study of Vascular Disease in Diabetes. Diabetologia. 2001;44(Suppl 2):S14–21. https://doi.org/10.1007/pl00002934.
Article
PubMed
Google Scholar
Abdul-Ghani M, DeFronzo RA, Del Prato S, Chilton R, Singh R, Ryder REJ. Cardiovascular disease and type 2 diabetes: has the dawn of a new era arrived? Diabetes Care. 2017;40(7):813–20. https://doi.org/10.2337/dc16-2736.
CAS
Article
PubMed
PubMed Central
Google Scholar
Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373(22):2117–28. https://doi.org/10.1056/NEJMoa1504720.
CAS
Article
PubMed
Google Scholar
Neal B, Perkovic V, Mahaffey KW, de Zeeuw D, Fulcher G, Erondu N, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017;377(7):644–57. https://doi.org/10.1056/NEJMoa1611925.
CAS
Article
PubMed
Google Scholar
Wiviott SD, Raz I, Bonaca MP, Mosenzon O, Kato ET, Cahn A, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2019;380(4):347–57. https://doi.org/10.1056/NEJMoa1812389.
CAS
Article
PubMed
Google Scholar
Birkeland KI, Jorgensen ME, Carstensen B, Persson F, Gulseth HL, Thuresson M, et al. Cardiovascular mortality and morbidity in patients with type 2 diabetes following initiation of sodium-glucose co-transporter-2 inhibitors versus other glucose-lowering drugs (CVD-REAL Nordic): a multinational observational analysis. Lancet Diabetes Endocrinol. 2017;5(9):709–17. https://doi.org/10.1016/S2213-8587(17)30258-9.
CAS
Article
PubMed
Google Scholar
Kosiborod M, Lam CSP, Kohsaka S, Kim DJ, Karasik A, Shaw J, et al. Cardiovascular events associated with SGLT-2 inhibitors versus other glucose-lowering drugs: the CVD-REAL 2 study. J Am Coll Cardiol. 2018;71(23):2628–39. https://doi.org/10.1016/j.jacc.2018.03.009.
CAS
Article
PubMed
Google Scholar
Garcia-Ropero A, Badimon JJ, Santos-Gallego CG. The pharmacokinetics and pharmacodynamics of SGLT2 inhibitors for type 2 diabetes mellitus: the latest developments. Expert Opin Drug Metab Toxicol. 2018;14(12):1287–302. https://doi.org/10.1080/17425255.2018.1551877.
CAS
Article
PubMed
Google Scholar
Chilton R, Tikkanen I, Cannon CP, Crowe S, Woerle HJ, Broedl UC, et al. Effects of empagliflozin on blood pressure and markers of arterial stiffness and vascular resistance in patients with type 2 diabetes. Diabetes Obes Metab. 2015;17(12):1180–93. https://doi.org/10.1111/dom.12572.
CAS
Article
PubMed
PubMed Central
Google Scholar
Santos-Gallego CG, Requena-Ibanez JA, San Antonio R, Ishikawa K, Watanabe S, Picatoste B, et al. Empagliflozin ameliorates adverse left ventricular remodeling in nondiabetic heart failure by enhancing myocardial energetics. J Am Coll Cardiol. 2019;73(15):1931–44. https://doi.org/10.1016/j.jacc.2019.01.056.
CAS
Article
PubMed
Google Scholar
Baartscheer A, Schumacher CA, Wust RC, Fiolet JW, Stienen GJ, Coronel R, et al. Empagliflozin decreases myocardial cytoplasmic Na(+) through inhibition of the cardiac Na(+)/H(+) exchanger in rats and rabbits. Diabetologia. 2017;60(3):568–73. https://doi.org/10.1007/s00125-016-4134-x.
CAS
Article
PubMed
Google Scholar
Staels B. Cardiovascular protection by sodium glucose cotransporter 2 inhibitors: potential mechanisms. Am J Med. 2017;130(6S):S30–S9. https://doi.org/10.1016/j.amjmed.2017.04.009.
CAS
Article
PubMed
Google Scholar
Brown E, Rajeev SP, Cuthbertson DJ, Wilding JPH. A review of the mechanism of action, metabolic profile and haemodynamic effects of sodium-glucose co-transporter-2 inhibitors. Diabetes Obes Metab. 2019;21(Suppl 2):9–18. https://doi.org/10.1111/dom.13650.
CAS
Article
PubMed
Google Scholar
Sano M, Goto S. Possible mechanism of hematocrit elevation by sodium glucose cotransporter 2 inhibitors and associated beneficial renal and cardiovascular effects. Circulation. 2019;139(17):1985–7. https://doi.org/10.1161/CIRCULATIONAHA.118.038881.
CAS
Article
PubMed
Google Scholar
Lowe GD, Lee AJ, Rumley A, Price JF, Fowkes FG. Blood viscosity and risk of cardiovascular events: the Edinburgh Artery Study. Br J Haematol. 1997;96(1):168–73. https://doi.org/10.1046/j.1365-2141.1997.8532481.x.
CAS
Article
PubMed
Google Scholar
Jin Y-Z, Zheng D-H, Duan Z-Y, Lin Y-Z, Zhang X-Y, Wang J-R, et al. Relationship between hematocrit level and cardiovascular risk factors in a community-based population. J Clin Lab Anal. 2015;29(4):289–93. https://doi.org/10.1002/jcla.21767.
Article
PubMed
Google Scholar
Emamian M, Hasanian SM, Tayefi M, Bijari M, Movahedian Far F, Shafiee M, et al. Association of hematocrit with blood pressure and hypertension. J Clin Lab Anal. 2017;31(6). https://doi.org/10.1002/jcla.22124.
Inzucchi SE, Zinman B, Fitchett D, Wanner C, Ferrannini E, Schumacher M, et al. How does empagliflozin reduce cardiovascular mortality? Insights from a mediation analysis of the EMPA-REG OUTCOME trial. Diabetes Care. 2018;41(2):356–63. https://doi.org/10.2337/dc17-1096.
CAS
Article
PubMed
Google Scholar
Irace C, Casciaro F, Scavelli FB, Oliverio R, Cutruzzola A, Cortese C, et al. Empagliflozin influences blood viscosity and wall shear stress in subjects with type 2 diabetes mellitus compared with incretin-based therapy. Cardiovasc Diabetol. 2018;17(1):52. https://doi.org/10.1186/s12933-018-0695-y.
CAS
Article
PubMed
PubMed Central
Google Scholar
Yeom E, Lee SJ. Microfluidic-based speckle analysis for sensitive measurement of erythrocyte aggregation: a comparison of four methods for detection of elevated erythrocyte aggregation in diabetic rat blood. Biomicrofluidics. 2015;9(2):024110. https://doi.org/10.1063/1.4917023.
CAS
Article
PubMed
PubMed Central
Google Scholar
Park Y, Best CA, Auth T, Gov NS, Safran SA, Popescu G, et al. Metabolic remodeling of the human red blood cell membrane. Proc Natl Acad Sci U S A. 2010;107(4):1289–94. https://doi.org/10.1073/pnas.0910785107.
Article
PubMed
PubMed Central
Google Scholar
Lee S, Park H, Kim K, Sohn Y, Jang S, Park Y. Refractive index tomograms and dynamic membrane fluctuations of red blood cells from patients with diabetes mellitus. Sci Rep. 2017;7(1):1039. https://doi.org/10.1038/s41598-017-01036-4.
CAS
Article
PubMed
PubMed Central
Google Scholar
Lowe GD. Blood viscosity, lipoproteins, and cardiovascular risk. Circulation. 1992;85(6):2329–31. https://doi.org/10.1161/01.cir.85.6.2329.
CAS
Article
PubMed
Google Scholar
Baskurt OK, Meiselman HJ. Blood rheology and hemodynamics. Semin Thromb Hemost. 2003;29(5):435–50. https://doi.org/10.1055/s-2003-44551.
CAS
Article
PubMed
Google Scholar
Cowan AQ, Cho DJ, Rosenson RS. Importance of blood rheology in the pathophysiology of atherothrombosis. Cardiovasc Drugs Ther. 2012;26(4):339–48. https://doi.org/10.1007/s10557-012-6402-4.
Article
PubMed
Google Scholar
Kensey KR. The mechanistic relationships between hemorheological characteristics and cardiovascular disease. Curr Med Res Opin. 2003;19(7):587–96. https://doi.org/10.1185/030079903125002289.
Article
PubMed
Google Scholar
Kameneva MV, Watach MJ, Borovetz HS. Gender difference in rheologic properties of blood and risk of cardiovascular diseases. Clin Hemorheol Microcirc. 1999;21(3–4):357–63.
CAS
PubMed
Google Scholar
Cho YI, Cho DJ. Hemorheology and microvascular disorders. Korean Circ J. 2011;41(6):287–95. https://doi.org/10.4070/kcj.2011.41.6.287.
Article
PubMed
PubMed Central
Google Scholar
Tulloch-Reid MK, Hanson RL, Saremi A, Looker HC, Williams DE, Krakoff J, et al. Hematocrit and the incidence of type 2 diabetes in the pima indians. Diabetes Care. 2004;27(9):2245–6. https://doi.org/10.2337/diacare.27.9.2245.
Article
PubMed
Google Scholar
Tamariz LJ, Young JH, Pankow JS, Yeh H-C, Schmidt MI, Astor B, et al. Blood viscosity and hematocrit as risk factors for type 2 diabetes mellitus: the atherosclerosis risk in communities (ARIC) study. Am J Epidemiol. 2008;168(10):1153–60. https://doi.org/10.1093/aje/kwn243.
Article
PubMed
PubMed Central
Google Scholar
Babu N, Singh M. Influence of hyperglycemia on aggregation, deformability and shape parameters of erythrocytes. Clin Hemorheol Microcirc. 2004;31(4):273–80.
CAS
PubMed
Google Scholar
American Diabetes A. Standards of medical care in diabetes-2020 abridged for primary care providers. Clin Diabetes. 2020;38(1):10–38. https://doi.org/10.2337/cd20-as01.
Article
Google Scholar
Xu L, Nagata N, Chen G, Nagashimada M, Zhuge F, Ni Y, et al. Empagliflozin reverses obesity and insulin resistance through fat browning and alternative macrophage activation in mice fed a high-fat diet. BMJ Open Diabetes Res Care. 2019;7(1):e000783. https://doi.org/10.1136/bmjdrc-2019-000783.
Article
PubMed
PubMed Central
Google Scholar
Keymel S, Heiss C, Kleinbongard P, Kelm M, Lauer T. Impaired red blood cell deformability in patients with coronary artery disease and diabetes mellitus. Horm Metab Res. 2011;43(11):760–5. https://doi.org/10.1055/s-0031-1286325.
CAS
Article
PubMed
Google Scholar
Park KH, Kim U, Choi KU, Nam JH, Lee JH, Lee CH, et al. Hemorheologic alterations in patients with type 2 diabetes mellitus presented with an acute myocardial infarction. Diabetes Metab J. 2018;42(2):155–63. https://doi.org/10.4093/dmj.2018.42.2.155.
Article
PubMed
PubMed Central
Google Scholar
Zeng NF, Mancuso JE, Zivkovic AM, Smilowitz JT, Ristenpart WD. Red blood cells from individuals with abdominal obesity or metabolic abnormalities exhibit less deformability upon entering a constriction. PLoS One. 2016;11(6):e0156070. https://doi.org/10.1371/journal.pone.0156070.
CAS
Article
PubMed
PubMed Central
Google Scholar
Ziobro A, Duchnowicz P, Mulik A, Koter-Michalak M, Broncel M. Oxidative damages in erythrocytes of patients with metabolic syndrome. Mol Cell Biochem. 2013;378(1–2):267–73. https://doi.org/10.1007/s11010-013-1617-7.
CAS
Article
PubMed
PubMed Central
Google Scholar
Leonard C, Conrard L, Guthmann M, Pollet H, Carquin M, Vermylen C, et al. Contribution of plasma membrane lipid domains to red blood cell (re)shaping. Sci Rep. 2017;7(1):4264. https://doi.org/10.1038/s41598-017-04388-z.
CAS
Article
PubMed
PubMed Central
Google Scholar
Santos-Gallego CG, Zafar M, Antonio RS, Ibanez JAR, Botija MBP, Ishikawa K, et al. The SGLT2 inhibitor empagliflozin does not exhibit pro thrombotic effects. J Am Coll Cardiol. 2018;71(11 Supplement):A1852. https://doi.org/10.1016/S0735-1097(18)32393-3.
Article
Google Scholar
Chesnutt JK, Han HC. Effect of red blood cells on platelet activation and thrombus formation in tortuous arterioles. Front Bioeng Biotechnol. 2013;1:18. https://doi.org/10.3389/fbioe.2013.00018.
Article
PubMed
PubMed Central
Google Scholar
McMurray JJV, Solomon SD, Inzucchi SE, Kober L, Kosiborod MN, Martinez FA, et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med. 2019;381(21):1995–2008. https://doi.org/10.1056/NEJMoa1911303.
CAS
Article
PubMed
Google Scholar
Santos-Gallego CG, Garcia-Ropero A, Mancini D, Pinney SP, Contreras JP, Fergus I, et al. Rationale and design of the EMPA-TROPISM trial (ATRU-4): are the “cardiac benefits” of empagliflozin independent of its hypoglycemic activity? Cardiovasc Drugs Ther. 2019;33(1):87–95. https://doi.org/10.1007/s10557-018-06850-0.
CAS
Article
PubMed
Google Scholar
Mazer CD, Hare GMT, Connelly PW, Gilbert RE, Shehata N, Quan A, et al. Effect of empagliflozin on erythropoietin levels, iron stores, and red blood cell morphology in patients with type 2 diabetes mellitus and coronary artery disease. Circulation. 2020;141(8):704–7. https://doi.org/10.1161/CIRCULATIONAHA.119.044235.
Article
PubMed
Google Scholar
Mohanty JG, Nagababu E, Rifkind JM. Red blood cell oxidative stress impairs oxygen delivery and induces red blood cell aging. Front Physiol. 2014;5:84. https://doi.org/10.3389/fphys.2014.00084.
Article
PubMed
PubMed Central
Google Scholar
Cho YI, Mooney MP, Cho DJ. Hemorheological disorders in diabetes mellitus. J Diabetes Sci Technol. 2008;2(6):1130–8. https://doi.org/10.1177/193229680800200622.
Article
PubMed
PubMed Central
Google Scholar
Tsuda K. Red blood cell abnormalities and hypertension. Hypertens Res. 2020;43(1):72–3. https://doi.org/10.1038/s41440-019-0353-0.
Article
PubMed
Google Scholar
Yaribeygi H, Atkin SL, Butler AE, Sahebkar A. Sodium-glucose cotransporter inhibitors and oxidative stress: an update. J Cell Physiol. 2019;234(4):3231–7. https://doi.org/10.1002/jcp.26760.
CAS
Article
PubMed
Google Scholar
Sheikh-Hasani V, Babaei M, Azadbakht A, Pazoki-Toroudi H, Mashaghi A, Moosavi-Movahedi AA, et al. Atorvastatin treatment softens human red blood cells: an optical tweezers study. Biomed Opt Express. 2018;9(3):1256–61. https://doi.org/10.1364/BOE.9.001256.
CAS
Article
PubMed
PubMed Central
Google Scholar