Skip to main content
Log in

Metformin Lowers Body Weight But Fails to Increase Insulin Sensitivity in Chronic Heart Failure Patients without Diabetes: a Randomized, Double-Blind, Placebo-Controlled Study

  • Original Article
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Purpose

The glucose-lowering drug metformin has recently been shown to reduce myocardial oxygen consumption and increase myocardial efficiency in chronic heart failure (HF) patients without diabetes. However, it remains to be established whether these beneficial myocardial effects are associated with metformin-induced alterations in whole-body insulin sensitivity and substrate metabolism.

Methods

Eighteen HF patients with reduced ejection fraction and without diabetes (median age, 65 (interquartile range 55–68); ejection fraction 39 ± 6%; HbA1c 5.5 to 6.4%) were randomized to receive metformin (n = 10) or placebo (n = 8) for 3 months. We studied the effects of metformin on whole-body insulin sensitivity using a two-step hyperinsulinemic euglycemic clamp incorporating isotope-labeled tracers of glucose, palmitate, and urea. Substrate metabolism and skeletal muscle mitochondrial respiratory capacity were determined by indirect calorimetry and high-resolution respirometry, and body composition was assessed by bioelectrical impedance analysis. The primary outcome measure was change in insulin sensitivity.

Results

Compared with placebo, metformin treatment lowered mean glycated hemoglobin levels (absolute mean difference, − 0.2%; 95% CI − 0.3 to 0.0; p = 0.03), reduced body weight (− 2.8 kg; 95% CI − 5.0 to − 0.6; p = 0.02), and increased fasting glucagon levels (3.2 pmol L−1; 95% CI 0.4 to 6.0; p = 0.03). No changes were observed in whole-body insulin sensitivity, endogenous glucose production, and peripheral glucose disposal or oxidation with metformin. Equally, resting energy expenditure, lipid and urea turnover, and skeletal muscle mitochondrial respiratory capacity remained unaltered.

Conclusion

Increased myocardial efficiency during metformin treatment is not mediated through improvements in insulin action in HF patients without diabetes.

Clinical Trial Registration

URL: https://clinicaltrials.gov. Unique identifier: NCT02810132. Date of registration: June 22, 2016.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of Data and Material

The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Bertero E, Maack C. Metabolic remodelling in heart failure. Nat Rev Cardiol. 2018;15:457–70. https://doi.org/10.1038/s41569-018-0044-6.

    Article  CAS  PubMed  Google Scholar 

  2. Larsen AH, Jessen N, Nørrelund H, Tolbod LP, Harms HJ, Feddersen S, et al. A randomized, double-blind, placebo-controlled trial of metformin on myocardial efficiency in insulin resistant chronic heart failure patients without diabetes. Eur J Heart Fail. 2019;(in press). https://doi.org/10.1002/EJHF.1656.

  3. Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HAW. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med. 2008;359(15):1577–89.

    Article  CAS  Google Scholar 

  4. Gormsen LC, Sondergaard E, Christensen NL, Brosen K, Jessen N, Nielsen S. Metformin increases endogenous glucose production in non-diabetic individuals and individuals with recent-onset type 2 diabetes. Diabetologia. 2019;62:1251–6. https://doi.org/10.1007/s00125-019-4872-7.

    Article  CAS  PubMed  Google Scholar 

  5. Johnson AB, Webster JM, Sum CF, Heseltine L, Argyraki M, Cooper BG, et al. The impact of metformin therapy on hepatic glucose production and skeletal muscle glycogen synthase activity in overweight type II diabetic patients. Metabolism. 1993;42(9):1217–22.

    Article  CAS  Google Scholar 

  6. Duca FA, Côté CD, Rasmussen BA, Zadeh-Tahmasebi M, Rutter GA, Filippi BM, et al. Metformin activates a duodenal Ampk-dependent pathway to lower hepatic glucose production in rats. Nat Med. 2015;21(5):506–11.

    Article  CAS  Google Scholar 

  7. Madiraju AK, Erion DM, Rahimi Y, Zhang XM, Braddock DT, Albright RA, et al. Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature. 2014;510(7506):542–6. https://doi.org/10.1038/nature13270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shaw RJ, Lamia KA, Vasquez D, Koo S-H, Bardeesy N, DePinho RA, et al. The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science. 2005;310(5754):1642–6.

    Article  CAS  Google Scholar 

  9. Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, et al. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest. 2001;108(8):1167–74. https://doi.org/10.1172/jci13505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Owen MR, Doran E, Halestrap AP. Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. The Biochemical journal. 2000;348(Pt 3):607–14.

    Article  CAS  Google Scholar 

  11. Hunter RW, Hughey CC, Lantier L, Sundelin EI, Peggie M, Zeqiraj E, et al. Metformin reduces liver glucose production by inhibition of fructose-1-6-bisphosphatase. Nat Med. 2018;24(9):1395–406. https://doi.org/10.1038/s41591-018-0159-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346(6):393–403. https://doi.org/10.1056/NEJMoa012512.

    Article  CAS  PubMed  Google Scholar 

  13. Preiss D, Lloyd SM, Ford I, McMurray JJ, Holman RR, Welsh P, et al. Metformin for non-diabetic patients with coronary heart disease (the CAMERA study): a randomised controlled trial. Lancet Diabetes Endocrinol. 2014;2(2):116–24. https://doi.org/10.1016/s2213-8587(13)70152-9.

    Article  CAS  PubMed  Google Scholar 

  14. Wang XF, Zhang JY, Li L, Zhao XY, Tao HL, Zhang L. Metformin improves cardiac function in rats via activation of AMP-activated protein kinase. Clin Exp Pharmacol Physiol. 2011;38(2):94–101.

    Article  Google Scholar 

  15. Cittadini A, Napoli R, Monti MG, Rea D, Longobardi S, Netti PA, et al. Metformin prevents the development of chronic heart failure in the SHHF rat model. Diabetes. 2012;61(4):944–53.

    Article  CAS  Google Scholar 

  16. Wong AK, Symon R, AlZadjali MA, Ang DS, Ogston S, Choy A, et al. The effect of metformin on insulin resistance and exercise parameters in patients with heart failure. Eur J Heart Fail. 2012;14(11):1303–10.

    Article  CAS  Google Scholar 

  17. Natali A, Ferrannini E. Effects of metformin and thiazolidinediones on suppression of hepatic glucose production and stimulation of glucose uptake in type 2 diabetes: a systematic review. Diabetologia. 2006;49(3):434–41. https://doi.org/10.1007/s00125-006-0141-7.

    Article  CAS  PubMed  Google Scholar 

  18. International Conference on Harmonisation Harmonised Tripartite Guideline for Good Clinical Practice (ICH-GCP), E6(R2), European Medicines Agency. 2016. https://www.ema.europa.eu/en/documents/scientific-guideline/ich-e-6-r2-guideline-good-clinical-practice-step-5_en.pdf. Accessed 8 July 2020.

  19. DeFronzo RA, Tobin JD, Andres R. Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Phys. 1979;237(3):E214–23. https://doi.org/10.1152/ajpendo.1979.237.3.E214.

    Article  CAS  Google Scholar 

  20. Krentz AJ, Heinemann L, Hompesch M. Translational research methods for diabetes, obesity and cardiometabolic drug development: a focus on early phase clinical studies. Springer; 2014.

  21. Dollerup OL, Christensen B, Svart M, Schmidt MS, Sulek K, Ringgaard S, et al. A randomized placebo-controlled clinical trial of nicotinamide riboside in obese men: safety, insulin-sensitivity, and lipid-mobilizing effects. Am J Clin Nutr. 2018;108(2):343–53. https://doi.org/10.1093/ajcn/nqy132.

    Article  PubMed  Google Scholar 

  22. Pedersen MH, Svart MV, Lebeck J, Bidlingmaier M, Stodkilde-Jorgensen H, Pedersen SB, et al. Substrate metabolism and insulin sensitivity during fasting in obese human subjects: impact of GH blockade. J Clin Endocrinol Metab. 2017;102(4):1340–9. https://doi.org/10.1210/jc.2016-3835.

    Article  PubMed  Google Scholar 

  23. Moller N, Jorgensen JO, Schmitz O, Moller J, Christiansen J, Alberti KG, et al. Effects of a growth hormone pulse on total and forearm substrate fluxes in humans. Am J Phys. 1990;258(1 Pt 1):E86–91. https://doi.org/10.1152/ajpendo.1990.258.1.E86.

    Article  CAS  Google Scholar 

  24. Steele R. Influences of glucose loading and of injected insulin on hepatic glucose output. Ann N Y Acad Sci. 1959;82:420–30.

    Article  CAS  Google Scholar 

  25. Jahoor F, Wolfe RR. Reassessment of primed constant-infusion tracer method to measure urea kinetics. Am J Phys. 1987;252(4 Pt 1):E557–64. https://doi.org/10.1152/ajpendo.1987.252.4.E557.

    Article  CAS  Google Scholar 

  26. Poulsen MM, Vestergaard PF, Clasen BF, Radko Y, Christensen LP, Stødkilde-Jørgensen H, et al. High-dose resveratrol supplementation in obese men. Diabetes. 2013;62(4):1186–95.

    Article  CAS  Google Scholar 

  27. Jespersen NR, Yokota T, Stottrup NB, Bergdahl A, Paelestik KB, Povlsen JA, et al. Pre-ischaemic mitochondrial substrate constraint by inhibition of malate-aspartate shuttle preserves mitochondrial function after ischaemia–reperfusion. J Physiol. 2017;595(12):3765–80. https://doi.org/10.1113/jp273408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Christiansen LB, Dela F, Koch J, Hansen CN, Leifsson PS, Yokota T. Impaired cardiac mitochondrial oxidative phosphorylation and enhanced mitochondrial oxidative stress in feline hypertrophic cardiomyopathy. Am J Physiol Heart Circ Physiol. 2015;308(10):H1237–47. https://doi.org/10.1152/ajpheart.00727.2014.

    Article  CAS  PubMed  Google Scholar 

  29. Ferrannini E. The theoretical bases of indirect calorimetry: a review. Metabolism. 1988;37(3):287–301.

    Article  CAS  Google Scholar 

  30. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28(7):412–9.

    Article  CAS  Google Scholar 

  31. Inzucchi SE, Maggs DG, Spollett GR, Page SL, Rife FS, Walton V, et al. Efficacy and metabolic effects of metformin and troglitazone in type II diabetes mellitus. N Engl J Med. 1998;338(13):867–72. https://doi.org/10.1056/nejm199803263381303.

    Article  CAS  PubMed  Google Scholar 

  32. Kim YB, Ciaraldi TP, Kong A, Kim D, Chu N, Mohideen P, et al. Troglitazone but not metformin restores insulin-stimulated phosphoinositide 3-kinase activity and increases p110beta protein levels in skeletal muscle of type 2 diabetic subjects. Diabetes. 2002;51(2):443–8.

    Article  CAS  Google Scholar 

  33. Rudvik A, Mansson M. Evaluation of surrogate measures of insulin sensitivity—correlation with gold standard is not enough. BMC Med Res Methodol. 2018;18(1):64. https://doi.org/10.1186/s12874-018-0521-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Konopka AR, Esponda RR, Robinson MM, Johnson ML, Carter RE, Schiavon M, et al. Hyperglucagonemia mitigates the effect of metformin on glucose production in prediabetes. Cell Rep. 2016;15(7):1394–400. https://doi.org/10.1016/j.celrep.2016.04.024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Christensen MM, Hojlund K, Hother-Nielsen O, Stage TB, Damkier P, Beck-Nielsen H, et al. Endogenous glucose production increases in response to metformin treatment in the glycogen-depleted state in humans: a randomised trial. Diabetologia. 2015;58(11):2494–502. https://doi.org/10.1007/s00125-015-3733-2.

    Article  CAS  PubMed  Google Scholar 

  36. Hother-Nielsen O, Schmitz O, Andersen PH, Beck-Nielsen H, Pedersen O. Metformin improves peripheral but not hepatic insulin action in obese patients with type II diabetes. Acta Endocrinol. 1989;120(3):257–65.

    Article  CAS  Google Scholar 

  37. Prager R, Schernthaner G, Graf H. Effect of metformin on peripheral insulin sensitivity in non insulin dependent diabetes mellitus. Diabetes Metab. 1986;12(6):346–50.

    CAS  Google Scholar 

  38. Hallsten K, Virtanen KA, Lonnqvist F, Sipila H, Oksanen A, Viljanen T, et al. Rosiglitazone but not metformin enhances insulin- and exercise-stimulated skeletal muscle glucose uptake in patients with newly diagnosed type 2 diabetes. Diabetes. 2002;51(12):3479–85.

    Article  CAS  Google Scholar 

  39. Karlsson HK, Hallsten K, Bjornholm M, Tsuchida H, Chibalin AV, Virtanen KA, et al. Effects of metformin and rosiglitazone treatment on insulin signaling and glucose uptake in patients with newly diagnosed type 2 diabetes: a randomized controlled study. Diabetes. 2005;54(5):1459–67.

    Article  CAS  Google Scholar 

  40. Stumvoll M, Nurjhan N, Perriello G, Dailey G, Gerich JE. Metabolic effects of metformin in non-insulin-dependent diabetes mellitus. N Engl J Med. 1995;333(9):550–4. https://doi.org/10.1056/nejm199508313330903.

    Article  CAS  PubMed  Google Scholar 

  41. Zierath JR, Galuska D, Nolte LA, Thorne A, Kristensen JS, Wallberg-Henriksson H. Effects of glycaemia on glucose transport in isolated skeletal muscle from patients with NIDDM: in vitro reversal of muscular insulin resistance. Diabetologia. 1994;37(3):270–7.

    Article  CAS  Google Scholar 

  42. Kelley DE, Mandarino LJ. Fuel selection in human skeletal muscle in insulin resistance: a reexamination. Diabetes. 2000;49(5):677–83.

    Article  CAS  Google Scholar 

  43. Roden M, Perseghin G, Petersen KF, Hwang JH, Cline GW, Gerow K, et al. The roles of insulin and glucagon in the regulation of hepatic glycogen synthesis and turnover in humans. J Clin Invest. 1996;97(3):642–8. https://doi.org/10.1172/jci118460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Miller RA, Chu Q, Xie J, Foretz M, Viollet B, Birnbaum MJ. Biguanides suppress hepatic glucagon signalling by decreasing production of cyclic AMP. Nature. 2013;494(7436):256–60. https://doi.org/10.1038/nature11808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hernandez-Cascales J. Does glucagon have a positive inotropic effect in the human heart? Cardiovasc Diabetol. 2018;17(1):148. https://doi.org/10.1186/s12933-018-0791-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Aroda VR, Knowler WC, Crandall JP, Perreault L, Edelstein SL, Jeffries SL, et al. Metformin for diabetes prevention: insights gained from the diabetes prevention program/diabetes prevention program outcomes study. Diabetologia. 2017;60(9):1601–11. https://doi.org/10.1007/s00125-017-4361-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Malin SK, Kashyap SR. Effects of metformin on weight loss: potential mechanisms. Curr Opin Endocrinol Diabetes Obes. 2014;21(5):323–9. https://doi.org/10.1097/med.0000000000000095.

    Article  CAS  PubMed  Google Scholar 

  48. DeFronzo RA, Barzilai N, Simonson DC. Mechanism of metformin action in obese and lean noninsulin-dependent diabetic subjects. J Clin Endocrinol Metab. 1991;73(6):1294–301. https://doi.org/10.1210/jcem-73-6-1294.

    Article  CAS  PubMed  Google Scholar 

  49. Tschritter O, Fritsche A, Thamer C, Haap M, Shirkavand F, Rahe S, et al. Plasma adiponectin concentrations predict insulin sensitivity of both glucose and lipid metabolism. Diabetes. 2003;52(2):239–43. https://doi.org/10.2337/diabetes.52.2.239.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful for the excellent assistance provided by the medical laboratory technicians at the Medical Research Laboratory and at the Department of Cardiology, Aarhus University Hospital, Denmark.

Funding

This work was supported by the Danish Diabetes Academy supported by the Novo Nordisk Foundation (OL8201 to A.H.L. and H.W.), the Danish Council for Independent Research (4183-00384 to N.J.), NNF-Diabetes Excellence Project (NNF13OC0003882 to N.J.), the Arvid Nilsson Foundation (Dok 1780631 to A.H.L.), the Faculty of Health at Aarhus University (phd0115 to A.H.L.), the Danish Heart Foundation (15-R99-A5947-22932; 15-R99-A5947-22933 to A.H.L. and H.W.), Kirsten Anthonius Memorial Fund (to A.H.L.), the Health Research Fund of Central Denmark Region (to A.H.L.), the Augustinus Foundation (15-4919 to A.H.L.), the Aase and Ejnar Danielsen Foundation (10-001657 to A.H.L.), the Helga and Peter Korning Foundation (55027-100 to A.H.L.), and the Hede Nielsen Foundation (to A.H.L.).

Author information

Authors and Affiliations

Authors

Contributions

N.J., H.W., H.N., K.B., J.F., N.M., and A.H.L. contributed to the study conception and/or design. Material preparation, data collection, and analysis were performed by A.H.L. The first draft of the manuscript was written by A.H.L. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Niels Jessen.

Ethics declarations

Competing Interests

Merck KGaA (Darmstadt, Germany) provided the metformin (Glucophage XR®) and placebo tablets free of charge. Merck KGaA reviewed the manuscript for medical accuracy only before journal submission. The authors are fully responsible for the content of this manuscript, and the views and opinions described in the publication reflect solely those of the authors. H.W. has been the principal or a sub-investigator in studies involving the following pharmaceutical companies: MSD, Bayer, Daiichi-Sankyo, Novartis, Novo Nordisk, Sanofi-Aventis, and Pfizer. The other authors report no conflicts.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 119 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Larsen, A.H., Wiggers, H., Dollerup, O.L. et al. Metformin Lowers Body Weight But Fails to Increase Insulin Sensitivity in Chronic Heart Failure Patients without Diabetes: a Randomized, Double-Blind, Placebo-Controlled Study. Cardiovasc Drugs Ther 35, 491–503 (2021). https://doi.org/10.1007/s10557-020-07050-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-020-07050-5

Keywords

Navigation