Skip to main content

Advertisement

Log in

Idebenone Protects against Atherosclerosis in Apolipoprotein E-Deficient Mice Via Activation of the SIRT3-SOD2-mtROS Pathway

  • Original Article
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Purpose

Atherosclerosis, a chronic disease of the arteries, results from pathological processes including the accumulation and aggregation of oxidized low-density lipoprotein (oxLDL) in the vessel walls, development of neointima, formation of a fibrous cap, and migration of immune cells to damaged vascular endothelium. Recent studies have shown that mitochondrial dysfunction is closely associated with the development and progression of atherosclerosis. Idebenone, a short-chain benzoquinone similar in structure to coenzyme Q10, can effectively clear oxygen free radicals as an electron carrier and antioxidant. In the present study, we aim to investigate weather idebenone protects against atherosclerosis in apolipoprotein E-deficient (apoE−/−) mice.

Methods

apoE−/− mice receiving a high-fat diet (HFD) were treated with idebenone for 16 weeks. A total of 60 mice were randomized into the following four groups: (1) HFD, (2) HFD and low-dose idebenone (100 mg/kg/d), (3) HFD and medium-dose idebenone (200 mg/kg/d), and (4) HFD and high-dose (400 mg/kg/d). Proteomic analysis was performed between the HFD and idebenone-high-dose group. Plaque analysis was carried out by histological and immunohistochemical staining. Western blot, TUNEL staining, and MitoSOX assays were performed in human umbilical vein endothelial cells (HUVECs) to investigate the SIRT3-SOD2-mtROS pathway.

Results

Histological and morphological analysis demonstrated that idebenone significantly reduced plaque burden and plaque size. Idebenone treatment effectively stabilized the atherosclerotic plaques. In mice treated with idebenone, 351 up-regulated and 379 down-regulated proteins were found to be significantly altered in proteomic analysis. In particular, the expression of SIRT3, SOD2, and NLRP3 was significantly regulated in the idebenone treatment groups compared with the HFD group both in vivo and in vitro. We further confirmed that idebenone protected against endothelial cell damage and inhibited the production of mitochondrial reactive oxygen species (mtROS) in cholesterol-treated HUVECs.

Conclusions

We demonstrated that idebenone acted as a mitochondrial protective agent by inhibiting the activation of NLPR3 via the SIRT3-SOD2-mtROS pathway. Idebenone may be a promising therapy for patients with atherosclerosis by improving mitochondrial dysfunction and inhibiting oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

LDL:

Low-density lipoprotein

OxLDL:

Oxidized low-density lipoprotein

HFD:

High-fat diet

HUVECs:

Human umbilical vein endothelial cells

ROS:

Reactive oxygen species

mtROS:

Mitochondrial reactive oxygen species

SIRT3:

Sirtuin3

SOD2:

Superoxide dismutase 2

CoQ10:

Coenzyme Q10

ECM:

Endothelial cell medium

ECGS:

Endothelial cell growth supplement

CCK-8:

Cell counting kit-8

IDE-L:

Low-dose idebenone group

IDE-M:

Medium-dose idebenone group

IDE-H:

High-dose idebenone group

OCT:

Optimal cutting temperature

RIPA:

Radioimmunoprecipitation assay

H&E:

Hematoxylin and eosin

SMCs:

Smooth muscle cells

TNF-α:

Tumor necrosis factor-α

PBS:

Phosphate-buffered saline

DAB:

Diaminobenzidine

TEAB:

Triethylamine-carbonic acid buffer

MMP:

Mitochondrial membrane potential

MDA:

Malondialdehyde

TG:

Triglycerides

TC:

Total cholesterol

HDL-C:

High-density lipoprotein cholesterol

LDL-C:

Low-density lipoprotein cholesterol

MRC:

Mitochondrial respiratory chain

References

  1. Pant S, Deshmukh A, Gurumurthy GS, Pothineni NV, Watts TE, Romeo F, et al. Inflammation and atherosclerosis--revisited. J Cardiovasc Pharmacol Ther. 2014;19(2):170–8.

    CAS  PubMed  Google Scholar 

  2. Schaftenaar F, Frodermann V, Kuiper J, Lutgens E. Atherosclerosis: the interplay between lipids and immune cells. Curr Opin Lipidol. 2016;27(3):209–15.

    CAS  PubMed  Google Scholar 

  3. Forstermann U, Xia N, Li H. Roles of vascular oxidative stress and nitric oxide in the pathogenesis of atherosclerosis. Circ Res. 2017 Feb 17;120(4):713–35.

    PubMed  Google Scholar 

  4. Sohrabi Y, Lagache SMM, Schnack L, Godfrey R, Kahles F, Bruemmer D, et al. mTOR-dependent oxidative stress regulates oxLDL-induced trained innate immunity in human monocytes. Front Immunol. 2019;9:3155.

    PubMed  PubMed Central  Google Scholar 

  5. Vasquez-Trincado C, Garcia-Carvajal I, Pennanen C, Parra V, Hill JA, Rothermel BA, et al. Mitochondrial dynamics, mitophagy and cardiovascular disease. J Physiol. 2016;594(3):509–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Yu EP, Bennett MR. Mitochondrial DNA damage and atherosclerosis. Trends Endocrinol Metab. 2014;25(9):481–7.

    CAS  PubMed  Google Scholar 

  7. Kattoor AJ, Pothineni NVK, Palagiri D, Mehta JL. Oxidative stress in atherosclerosis. Curr Atheroscler Rep. 2017;19(11):42.

    PubMed  Google Scholar 

  8. Singh R, Devi S, Gollen R. Role of free radical in atherosclerosis, diabetes and dyslipidaemia: larger-than-life. Diabetes Metab Res Rev. 2015;31(2):113–26.

    CAS  PubMed  Google Scholar 

  9. Ray PD, Huang BW, Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal. 2012;24(5):981–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Stefanatos R, Sanz A. The role of mitochondrial ROS in the aging brain. FEBS Lett. 2018;592(5):743–58.

    CAS  PubMed  Google Scholar 

  11. Van den Bossche J, Baardman J, Otto NA, van der Velden S, Neele AE, van den Berg SM, et al. Mitochondrial dysfunction prevents repolarization of inflammatory macrophages. Cell Rep. 2016;17(3):684–96.

    PubMed  Google Scholar 

  12. Xiao M, Zhong H, Xia L, Tao Y, Yin H. Pathophysiology of mitochondrial lipid oxidation: role of 4-hydroxynonenal (4-HNE) and other bioactive lipids in mitochondria. Free Radic Biol Med. 2017;111:316–27.

    CAS  PubMed  Google Scholar 

  13. Chistiakov DA, Shkurat TP, Melnichenko AA, Grechko AV, Orekhov AN. The role of mitochondrial dysfunction in cardiovascular disease: a brief review. Ann Med. 2018;50(2):121–7.

    CAS  PubMed  Google Scholar 

  14. Yuan T, Yang T, Chen H, Fu D, Hu Y, Wang J, et al. New insights into oxidative stress and inflammation during diabetes mellitus-accelerated atherosclerosis. Redox Biol. 2019;20:247–60.

    CAS  PubMed  Google Scholar 

  15. Tabares-Guevara JH, Lara-Guzmán OJ, Londoño-Londoño JA, Sierra JA, León-Varela YM, Álvarez-Quintero RM. Natural biflavonoids modulate macrophage-oxidized LDL interaction in vitro and promote atheroprotection in vivo. Front Immunol. 2017;8:923.

    PubMed  PubMed Central  Google Scholar 

  16. Montenegro L, Modica MN, Salerno L, Panico AM, Crasci L, Puglisi G, et al. In vitro antioxidant activity of Idebenone derivative-loaded solid lipid nanoparticles. Molecules. 2017;22(6).

  17. Jaber S, Polster BM. Idebenone and neuroprotection: antioxidant, pro-oxidant, or electron carrier? J Bioenerg Biomembr. 2015;47(1–2):111–8.

    CAS  PubMed  Google Scholar 

  18. Lin P, Liu J, Ren M, Ji K, Li L, Zhang B, et al. Idebenone protects against oxidized low density lipoprotein induced mitochondrial dysfunction in vascular endothelial cells via GSK3beta/beta-catenin signalling pathways. Biochem Biophys Res Commun. 2015;465(3):548–55.

    CAS  PubMed  Google Scholar 

  19. Ma J, Qiao L, Meng L, Ma L, Zhao Y, Liu X, et al. Tongxinluo may stabilize atherosclerotic plaque via multiple mechanisms scanning by genechip. Biomed Pharmacother. 2019;113:108767.

    CAS  PubMed  Google Scholar 

  20. Chen ML, Zhu XH, Ran L, Lang HD, Yi L, Mi MT. Trimethylamine-N-oxide induces vascular inflammation by activating the NLRP3 Inflammasome through the SIRT3-SOD2-mtROS signaling pathway. J Am Heart Assoc. 2017;6(9).

  21. Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev. 2014;94(3):909–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Angajala A, Lim S, Phillips JB, Kim JH, Yates C, You Z, et al. Diverse roles of mitochondria in immune responses: novel insights into Immuno-metabolism. Front Immunol. 2018;9:1605.

    PubMed  PubMed Central  Google Scholar 

  23. Ballinger SW, Patterson C, Knight-Lozano CA, Burow DL, Conklin CA, Hu Z, et al. Mitochondrial integrity and function in atherogenesis. Circulation. 2002;106(5):544–9.

    CAS  PubMed  Google Scholar 

  24. Yu E, Calvert PA, Mercer JR, Harrison J, Baker L, Figg NL, et al. Mitochondrial DNA damage can promote atherosclerosis independently of reactive oxygen species through effects on smooth muscle cells and monocytes and correlates with higher-risk plaques in humans. Circulation. 2013;128(7):702–12.

    CAS  PubMed  Google Scholar 

  25. Subramanian S, Kalyanaraman B, Migrino RQ. Mitochondrially targeted antioxidants for the treatment of cardiovascular diseases. Recent Pat Cardiovasc Drug Discov. 2010;5(1):54–65.

    CAS  PubMed  Google Scholar 

  26. Tiefenbach J, Magomedova L, Liu J, Reunov AA, Tsai R, Eappen NS, Jockusch RA, Nislow C, Cummins CL, Krause HM. Idebenone and coenzyme Q10 are novel PPARalpha/gamma ligands, with potential for treatment of fatty liver diseases. Dis Model Mech 2018;11(9).

  27. Yan A, Liu Z, Song L, Wang X, Zhang Y, Wu N, et al. Idebenone alleviates Neuroinflammation and modulates microglial polarization in LPS-stimulated BV2 cells and MPTP-induced Parkinson's disease mice. Front Cell Neurosci. 2018;12:529.

    CAS  PubMed  Google Scholar 

  28. Becker C, Bray-French K, Drewe J. Pharmacokinetic evaluation of idebenone. Expert Opin Drug Metab Toxicol. 2010;6(11):1437–44.

    CAS  PubMed  Google Scholar 

  29. Cardoso SM, Pereira C, Oliveira R. Mitochondrial function is differentially affected upon oxidative stress. Free Radic Biol Med. 1999;26(1–2):3–13.

    CAS  PubMed  Google Scholar 

  30. Giorgio V, Schiavone M, Galber C, Carini M, Da Ros T, Petronilli V, et al. The idebenone metabolite QS10 restores electron transfer in complex I and coenzyme Q defects. Biochim Biophys Acta Bioenerg. 2018;1859(9):901–8.

    CAS  PubMed  Google Scholar 

  31. Yu-Wai-Man P, Soiferman D, Moore DG, Burte F, Saada A. Evaluating the therapeutic potential of idebenone and related quinone analogues in Leber hereditary optic neuropathy. Mitochondrion. 2017;36:36–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Kobayashi T, Yoshida K, Mitani M, Torii H, Tanayama S. Metabolism of idebenone (CV-2619), a new cerebral metabolism improving agent: isolation and identification of metabolites in the rat and dog. Aust J Pharm. 1985;8(6):448–56.

    CAS  Google Scholar 

  33. Xu ZR, Li JY, Dong XW, Tan ZJ, Wu WZ, Xie QM, et al. Apple polyphenols decrease atherosclerosis and hepatic steatosis in ApoE−/− mice through the ROS/MAPK/NF-κB pathway. Nutrients. 2015;7(8):7085–105.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Gueven N. Idebenone for Leber's hereditary optic neuropathy. Drugs Today (Barc). 2016;52(3):173–81.

    CAS  Google Scholar 

  35. Fadda LM, Hagar H, Mohamed AM, Ali HM. Quercetin and Idebenone ameliorate oxidative stress, inflammation, DNA damage, and apoptosis induced by titanium dioxide nanoparticles in rat liver. Dose Response. 2018;16(4):1559325818812188.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Traba J, Geiger SS, Kwarteng-Siaw M, Han K, Ra OH, Siegel RM, et al. Prolonged fasting suppresses mitochondrial NLRP3 inflammasome assembly and activation via SIRT3-mediated activation of superoxide dismutase 2. J Biol Chem. 2017;292(29):12153–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Kane AE, Sinclair DA. Sirtuins and NAD(+) in the development and treatment of metabolic and cardiovascular diseases. Circ Res. 2018;123(7):868–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Sosnowska B, Mazidi M, Penson P, Gluba-Brzozka A, Rysz J, Banach M. The sirtuin family members SIRT1, SIRT3 and SIRT6: their role in vascular biology and atherogenesis. Atherosclerosis. 2017;265:275–82.

    CAS  PubMed  Google Scholar 

  39. Wu J, Zeng Z, Zhang W, Deng Z, Wan Y, Zhang Y, et al. Emerging role of SIRT3 in mitochondrial dysfunction and cardiovascular diseases. Free Radic Res. 2019;53(2):139–49.

    CAS  PubMed  Google Scholar 

  40. Salvatori I, Valle C, Ferri A, Carri MT. SIRT3 and mitochondrial metabolism in neurodegenerative diseases. Neurochem Int. 2017;109:184–92.

    CAS  PubMed  Google Scholar 

  41. Karnewar S, Vasamsetti SB, Gopoju R, Kanugula AK, Ganji SK, Prabhakar S, et al. Mitochondria-targeted esculetin alleviates mitochondrial dysfunction by AMPK-mediated nitric oxide and SIRT3 regulation in endothelial cells: potential implications in atherosclerosis. Sci Rep. 2016;6:24108.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Dikalova AE, Itani HA, Nazarewicz RR, McMaster WG, Flynn CR, Uzhachenko R, et al. Sirt3 impairment and SOD2 Hyperacetylation in vascular oxidative stress and hypertension. Circ Res. 2017;121(5):564–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Haneklaus M, O'Neill LA. NLRP3 at the interface of metabolism and inflammation. Immunol Rev. 2015;265(1):53–62.

    CAS  PubMed  Google Scholar 

  44. Song N, Li T. Regulation of NLRP3 Inflammasome by phosphorylation. Front Immunol. 2018;9:2305.

    PubMed  PubMed Central  Google Scholar 

  45. Minutoli L, Puzzolo D, Rinaldi M, Irrera N, Marini H, Arcoraci V, et al. ROS-mediated NLRP3 Inflammasome activation in brain, heart, kidney, and testis ischemia/reperfusion injury. Oxidative Med Cell Longev. 2016;2016:2183026.

    Google Scholar 

  46. Jo EK, Kim JK, Shin DM, Sasakawa C. Molecular mechanisms regulating NLRP3 inflammasome activation. Cell Mol Immunol. 2016;13(2):148–59.

    CAS  PubMed  Google Scholar 

  47. Grebe A, Hoss F, Latz E. NLRP3 Inflammasome and the IL-1 pathway in atherosclerosis. Circ Res. 2018;122(12):1722–40.

    CAS  PubMed  Google Scholar 

  48. Hoseini Z, Sepahvand F, Rashidi B, Sahebkar A, Masoudifar A, Mirzaei H. NLRP3 inflammasome: its regulation and involvement in atherosclerosis. J Cell Physiol. 2018;233(3):2116–32.

    CAS  PubMed  Google Scholar 

  49. Wang R, Wang Y, Mu N, Lou X, Li W, Chen Y, et al. Activation of NLRP3 inflammasomes contributes to hyperhomocysteinemia-aggravated inflammation and atherosclerosis in apoE-deficient mice. Lab Investig. 2017;97(8):922–34.

    CAS  PubMed  Google Scholar 

  50. Corrêa R, Silva LFF, Ribeiro DJS, Almeida RDN, Santos IO, Corrêa LH, et al. Lysophosphatidylcholine Induces NLRP3 Inflammasome-Mediated Foam Cell Formation and Pyroptosis inHuman Monocytes and Endothelial Cells. Front Immunol. 2020;10:2927.

    PubMed  PubMed Central  Google Scholar 

  51. Perry JB, Davis GN, Allen ME, Makrecka-Kuka M, Dambrova M, Grange RW, et al. Cardioprotective effects of idebenone do not involve ROS scavenging: evidence for mitochondrial complex I bypass in ischemia/reperfusion injury. J Mol Cell Cardiol. 2019;135:160–71.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine for appropriate advice about the animal experimental protocol. This manuscript was edited for English language by Medjaden Bioscience Limited. We thank Medjaden Bioscience Limited for English language editing.

Funding

This work was supported by the Taishan Scholars Program of Shandong Province and Policy supported projects of collaborative innovation and achievement transformation in universities and research institutes of Jinan (2019GXRC050).

Author information

Authors and Affiliations

Authors

Contributions

Wei Jiang, Fuchen Liu, Pengfei Lin, and Chuanzhu Yan were involved in the conceptualization and design of the study, acquisition and interpretation of data, drafting of the manuscript, and final approval of the version to be published.

Corresponding authors

Correspondence to Pengfei Lin or Chuanzhu Yan.

Ethics declarations

Ethics Statement

This study was approved by the Brain Science Research Institute and the Ethics Committee from Qilu Hospital of Shandong University (Jinan, China).

Competing Interests

The authors declare that there are no known conflicts of interest associated with this publication, and no significant financial support was received for this work that could have influenced its outcome.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

Fig. S1. Tissues between the aortic root and the abdominal aorta were selected for the proteomics. Fig. S2 - Fig. S4. GO enrichment bubble plot of differentially expressed proteins in three categories. Fig. S5 - Fig. S7. Comprehensive heat map for cluster analysis of the enrichment patterns of GO functional categories. Fig. S8. COG/KOG functional classification chart of differentially expressed proteins mainly involved in (C) energy production and conversion, (E) amino acid transport and metabolism, (I) lipid transport and metabolism, (R) general function prediction, and (T) signal transduction mechanisms. Fig. S9. Idebenone can suppress the expression of IL-1β tested by ELISA in both in vitro and in vivo experiments. (A) Quantification of the expression of IL-1β by ELISA in the four different treatment groups with apoE−/− mice (each group n = 7). (B) Quantification of the expression of IL-1β by ELISA in the four different groups (Si-control, Si-control + 10 μM CHOL, Si-control + 10 μM CHOL + 0.2 μM IDE, and Si-SIRT3 + 10 μM CHOL + 0.2 μM IDE) with HUVECs (each group n = 3). Representative data were from three independent experiments. Data are expressed as the mean ± SD. (A)*P < 0.05 vs. control; (B)*P < 0.05 vs.10 μM CHOL, #P < 0.05 vs. Si-control + 10 μM CHOL + 0.2 μM IDE. CHOL: cholesterol, IDE: idebenone. HFD: high-fat diet, L: low-dose, M: medium-dose, H: high-dose. Fig. S10. (a) Representative fluorescence image by MitoSOX and MitoTracker staining between control and 0.2 μM idebenone group (each group n = 5). (b) Quantitative analysis of intensity of red fluorescence by MitoSOX staining. (c) CCK8 detects the cell viability of HUVECs between control and 0.2 μM idebenone group (each group n = 5). Representative data were from three independent experiments. Data are expressed as the mean ± SD. IDE: idebenone. (DOCX 14586 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, W., Geng, H., Lv, X. et al. Idebenone Protects against Atherosclerosis in Apolipoprotein E-Deficient Mice Via Activation of the SIRT3-SOD2-mtROS Pathway. Cardiovasc Drugs Ther 35, 1129–1145 (2021). https://doi.org/10.1007/s10557-020-07018-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-020-07018-5

Keywords

Navigation